Aspect-Based Sentiment Analysis using Machine Learning and Deep Learning Approaches Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.17762/ijritcc.v11i5s.6636
Sentiment analysis (SA) is also known as opinion mining, it is the process of gathering and analyzing people's opinions about a particular service, good, or company on websites like Twitter, Facebook, Instagram, LinkedIn, and blogs, among other places. This article covers a thorough analysis of SA and its levels. This manuscript's main focus is on aspect-based SA, which helps manufacturing organizations make better decisions by examining consumers' viewpoints and opinions of their products. The many approaches and methods used in aspect-based sentiment analysis are covered in this review study (ABSA). The features associated with the aspects were manually drawn out in traditional methods, which made it a time-consuming and error-prone operation. Nevertheless, these restrictions may be overcome as artificial intelligence develops. Therefore, to increase the effectiveness of ABSA, researchers are increasingly using AI-based machine learning (ML) and deep learning (DL) techniques. Additionally, certain recently released ABSA approaches based on ML and DL are examined, contrasted, and based on this research, gaps in both methodologies are discovered. At the conclusion of this study, the difficulties that current ABSA models encounter are also emphasized, along with suggestions that can be made to improve the efficacy and precision of ABSA systems.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.17762/ijritcc.v11i5s.6636
- https://ijritcc.org/index.php/ijritcc/article/download/6636/5909
- OA Status
- diamond
- Cited By
- 30
- References
- 86
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4383958272
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4383958272Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.17762/ijritcc.v11i5s.6636Digital Object Identifier
- Title
-
Aspect-Based Sentiment Analysis using Machine Learning and Deep Learning ApproachesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-05-17Full publication date if available
- Authors
-
Dinesh Kumar, Avdhesh Gupta, Vishan Kumar Gupta, Ashotosh GuptaList of authors in order
- Landing page
-
https://doi.org/10.17762/ijritcc.v11i5s.6636Publisher landing page
- PDF URL
-
https://ijritcc.org/index.php/ijritcc/article/download/6636/5909Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ijritcc.org/index.php/ijritcc/article/download/6636/5909Direct OA link when available
- Concepts
-
Viewpoints, Sentiment analysis, Computer science, Artificial intelligence, Focus (optics), Process (computing), Data science, Service (business), Deep learning, Machine learning, Knowledge management, Marketing, Operating system, Optics, Art, Visual arts, Business, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
30Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 9, 2024: 17, 2023: 4Per-year citation counts (last 5 years)
- References (count)
-
86Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4383958272 |
|---|---|
| doi | https://doi.org/10.17762/ijritcc.v11i5s.6636 |
| ids.doi | https://doi.org/10.17762/ijritcc.v11i5s.6636 |
| ids.openalex | https://openalex.org/W4383958272 |
| fwci | 7.66328663 |
| type | article |
| title | Aspect-Based Sentiment Analysis using Machine Learning and Deep Learning Approaches |
| biblio.issue | 5s |
| biblio.volume | 11 |
| biblio.last_page | 138 |
| biblio.first_page | 118 |
| topics[0].id | https://openalex.org/T10664 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9656000137329102 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Sentiment Analysis and Opinion Mining |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776035091 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9105184674263 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7928819 |
| concepts[0].display_name | Viewpoints |
| concepts[1].id | https://openalex.org/C66402592 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8107860088348389 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2271421 |
| concepts[1].display_name | Sentiment analysis |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7536157369613647 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6254854202270508 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C192209626 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5324656963348389 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q190909 |
| concepts[4].display_name | Focus (optics) |
| concepts[5].id | https://openalex.org/C98045186 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5148993730545044 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[5].display_name | Process (computing) |
| concepts[6].id | https://openalex.org/C2522767166 |
| concepts[6].level | 1 |
| concepts[6].score | 0.49689558148384094 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[6].display_name | Data science |
| concepts[7].id | https://openalex.org/C2780378061 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4885340929031372 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q25351891 |
| concepts[7].display_name | Service (business) |
| concepts[8].id | https://openalex.org/C108583219 |
| concepts[8].level | 2 |
| concepts[8].score | 0.43376174569129944 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[8].display_name | Deep learning |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.40901607275009155 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C56739046 |
| concepts[10].level | 1 |
| concepts[10].score | 0.32014840841293335 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q192060 |
| concepts[10].display_name | Knowledge management |
| concepts[11].id | https://openalex.org/C162853370 |
| concepts[11].level | 1 |
| concepts[11].score | 0.10606032609939575 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[11].display_name | Marketing |
| concepts[12].id | https://openalex.org/C111919701 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[12].display_name | Operating system |
| concepts[13].id | https://openalex.org/C120665830 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[13].display_name | Optics |
| concepts[14].id | https://openalex.org/C142362112 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[14].display_name | Art |
| concepts[15].id | https://openalex.org/C153349607 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q36649 |
| concepts[15].display_name | Visual arts |
| concepts[16].id | https://openalex.org/C144133560 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[16].display_name | Business |
| concepts[17].id | https://openalex.org/C121332964 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[17].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/viewpoints |
| keywords[0].score | 0.9105184674263 |
| keywords[0].display_name | Viewpoints |
| keywords[1].id | https://openalex.org/keywords/sentiment-analysis |
| keywords[1].score | 0.8107860088348389 |
| keywords[1].display_name | Sentiment analysis |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7536157369613647 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6254854202270508 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/focus |
| keywords[4].score | 0.5324656963348389 |
| keywords[4].display_name | Focus (optics) |
| keywords[5].id | https://openalex.org/keywords/process |
| keywords[5].score | 0.5148993730545044 |
| keywords[5].display_name | Process (computing) |
| keywords[6].id | https://openalex.org/keywords/data-science |
| keywords[6].score | 0.49689558148384094 |
| keywords[6].display_name | Data science |
| keywords[7].id | https://openalex.org/keywords/service |
| keywords[7].score | 0.4885340929031372 |
| keywords[7].display_name | Service (business) |
| keywords[8].id | https://openalex.org/keywords/deep-learning |
| keywords[8].score | 0.43376174569129944 |
| keywords[8].display_name | Deep learning |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.40901607275009155 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/knowledge-management |
| keywords[10].score | 0.32014840841293335 |
| keywords[10].display_name | Knowledge management |
| keywords[11].id | https://openalex.org/keywords/marketing |
| keywords[11].score | 0.10606032609939575 |
| keywords[11].display_name | Marketing |
| language | en |
| locations[0].id | doi:10.17762/ijritcc.v11i5s.6636 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764488870 |
| locations[0].source.issn | 2321-8169 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2321-8169 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal on Recent and Innovation Trends in Computing and Communication |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://ijritcc.org/index.php/ijritcc/article/download/6636/5909 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal on Recent and Innovation Trends in Computing and Communication |
| locations[0].landing_page_url | https://doi.org/10.17762/ijritcc.v11i5s.6636 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5021506332 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1992-1398 |
| authorships[0].author.display_name | Dinesh Kumar |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science & Engineering Krishna Institute of Engineering and Technology, Ghaziabad, Uttarpradesh, India |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dinesh Kumar |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science & Engineering Krishna Institute of Engineering and Technology, Ghaziabad, Uttarpradesh, India |
| authorships[1].author.id | https://openalex.org/A5031271030 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4880-967X |
| authorships[1].author.display_name | Avdhesh Gupta |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I166533956 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Information Technology Ajay Kumar Garg Engineering College, Ghaziabad, Uttarpradesh, India |
| authorships[1].institutions[0].id | https://openalex.org/I166533956 |
| authorships[1].institutions[0].ror | https://ror.org/05k0kb696 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I166533956 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Institute of Management Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Avdhesh Gupta |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Information Technology Ajay Kumar Garg Engineering College, Ghaziabad, Uttarpradesh, India |
| authorships[2].author.id | https://openalex.org/A5081414393 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7245-3824 |
| authorships[2].author.display_name | Vishan Kumar Gupta |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I94511900 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science & Engineering Sir Padampat Singhania University, Udaipur, Rajasthan, India |
| authorships[2].institutions[0].id | https://openalex.org/I94511900 |
| authorships[2].institutions[0].ror | https://ror.org/03mhsvf98 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I94511900 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Sir Padampat Singhania University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Vishan Kumar Gupta |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science & Engineering Sir Padampat Singhania University, Udaipur, Rajasthan, India |
| authorships[3].author.id | https://openalex.org/A5101222864 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Ashotosh Gupta |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I94511900 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering Sir Padampat Singhania University, Udaipur, Rajasthan, India |
| authorships[3].institutions[0].id | https://openalex.org/I94511900 |
| authorships[3].institutions[0].ror | https://ror.org/03mhsvf98 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I94511900 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Sir Padampat Singhania University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Ashotosh Gupta |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science and Engineering Sir Padampat Singhania University, Udaipur, Rajasthan, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ijritcc.org/index.php/ijritcc/article/download/6636/5909 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Aspect-Based Sentiment Analysis using Machine Learning and Deep Learning Approaches |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10664 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9656000137329102 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Sentiment Analysis and Opinion Mining |
| related_works | https://openalex.org/W2385368906, https://openalex.org/W2902924992, https://openalex.org/W2626642044, https://openalex.org/W2388758053, https://openalex.org/W93537448, https://openalex.org/W2619807045, https://openalex.org/W2949734191, https://openalex.org/W2017333877, https://openalex.org/W4233821346, https://openalex.org/W4380075502 |
| cited_by_count | 30 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 9 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 17 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| locations_count | 1 |
| best_oa_location.id | doi:10.17762/ijritcc.v11i5s.6636 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764488870 |
| best_oa_location.source.issn | 2321-8169 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2321-8169 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal on Recent and Innovation Trends in Computing and Communication |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ijritcc.org/index.php/ijritcc/article/download/6636/5909 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal on Recent and Innovation Trends in Computing and Communication |
| best_oa_location.landing_page_url | https://doi.org/10.17762/ijritcc.v11i5s.6636 |
| primary_location.id | doi:10.17762/ijritcc.v11i5s.6636 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764488870 |
| primary_location.source.issn | 2321-8169 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2321-8169 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal on Recent and Innovation Trends in Computing and Communication |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://ijritcc.org/index.php/ijritcc/article/download/6636/5909 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal on Recent and Innovation Trends in Computing and Communication |
| primary_location.landing_page_url | https://doi.org/10.17762/ijritcc.v11i5s.6636 |
| publication_date | 2023-05-17 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2345493290, https://openalex.org/W3129712087, https://openalex.org/W3088107006, https://openalex.org/W2909493050, https://openalex.org/W3216877746, https://openalex.org/W2891412904, https://openalex.org/W2250214463, https://openalex.org/W4383958272, https://openalex.org/W2562607067, https://openalex.org/W2310041076, https://openalex.org/W2790309729, https://openalex.org/W2804140940, https://openalex.org/W2604668619, https://openalex.org/W2788618579, https://openalex.org/W2808182015, https://openalex.org/W2513634304, https://openalex.org/W2427312199, https://openalex.org/W2754300949, https://openalex.org/W2889679323, https://openalex.org/W2969811318, https://openalex.org/W2606208255, https://openalex.org/W2741252866, https://openalex.org/W2794824456, https://openalex.org/W2925656790, https://openalex.org/W2159114518, https://openalex.org/W2802799390, https://openalex.org/W2907012505, https://openalex.org/W2773971852, https://openalex.org/W2773800057, https://openalex.org/W2529550020, https://openalex.org/W2251648804, https://openalex.org/W4200575386, https://openalex.org/W3203033219, https://openalex.org/W2025478229, https://openalex.org/W1885086035, https://openalex.org/W1602588861, https://openalex.org/W2513138008, https://openalex.org/W2134684245, https://openalex.org/W2020060453, https://openalex.org/W6637805623, https://openalex.org/W2113125055, https://openalex.org/W6641374425, https://openalex.org/W2129604374, https://openalex.org/W3003963580, https://openalex.org/W2296639515, https://openalex.org/W3081285030, https://openalex.org/W758155932, https://openalex.org/W2736040269, https://openalex.org/W2576409085, https://openalex.org/W2080203041, https://openalex.org/W2907407614, https://openalex.org/W2734853991, https://openalex.org/W2588632020, https://openalex.org/W1190615618, https://openalex.org/W3128176512, https://openalex.org/W2912505607, https://openalex.org/W1969256433, https://openalex.org/W2121431359, https://openalex.org/W2883123498, https://openalex.org/W2936162775, https://openalex.org/W2528258710, https://openalex.org/W3128064702, https://openalex.org/W3171900338, https://openalex.org/W2892080785, https://openalex.org/W3192878052, https://openalex.org/W3174498707, https://openalex.org/W3176502972, https://openalex.org/W3198253827, https://openalex.org/W4239522099, https://openalex.org/W3207320223, https://openalex.org/W3131093357, https://openalex.org/W3213142362, https://openalex.org/W2739677115, https://openalex.org/W4245618588, https://openalex.org/W3197066695, https://openalex.org/W2814589985, https://openalex.org/W2898812668, https://openalex.org/W4285793625, https://openalex.org/W2782655417, https://openalex.org/W3154470985, https://openalex.org/W3045707174, https://openalex.org/W2964059932, https://openalex.org/W2790106910, https://openalex.org/W1964613733, https://openalex.org/W2962843214, https://openalex.org/W4309738986 |
| referenced_works_count | 86 |
| abstract_inverted_index.a | 20, 41, 106 |
| abstract_inverted_index.At | 166 |
| abstract_inverted_index.DL | 151 |
| abstract_inverted_index.ML | 149 |
| abstract_inverted_index.SA | 45 |
| abstract_inverted_index.as | 6, 117 |
| abstract_inverted_index.be | 115, 187 |
| abstract_inverted_index.by | 64 |
| abstract_inverted_index.in | 79, 85, 100, 161 |
| abstract_inverted_index.is | 3, 10, 53 |
| abstract_inverted_index.it | 9, 105 |
| abstract_inverted_index.of | 13, 44, 70, 126, 169, 195 |
| abstract_inverted_index.on | 26, 54, 148, 157 |
| abstract_inverted_index.or | 24 |
| abstract_inverted_index.to | 122, 189 |
| abstract_inverted_index.SA, | 56 |
| abstract_inverted_index.The | 73, 90 |
| abstract_inverted_index.and | 15, 33, 46, 68, 76, 108, 136, 150, 155, 193 |
| abstract_inverted_index.are | 83, 129, 152, 164, 179 |
| abstract_inverted_index.can | 186 |
| abstract_inverted_index.its | 47 |
| abstract_inverted_index.may | 114 |
| abstract_inverted_index.out | 99 |
| abstract_inverted_index.the | 11, 94, 124, 167, 172, 191 |
| abstract_inverted_index.(DL) | 139 |
| abstract_inverted_index.(ML) | 135 |
| abstract_inverted_index.(SA) | 2 |
| abstract_inverted_index.ABSA | 145, 176, 196 |
| abstract_inverted_index.This | 38, 49 |
| abstract_inverted_index.also | 4, 180 |
| abstract_inverted_index.both | 162 |
| abstract_inverted_index.deep | 137 |
| abstract_inverted_index.gaps | 160 |
| abstract_inverted_index.like | 28 |
| abstract_inverted_index.made | 104, 188 |
| abstract_inverted_index.main | 51 |
| abstract_inverted_index.make | 61 |
| abstract_inverted_index.many | 74 |
| abstract_inverted_index.that | 174, 185 |
| abstract_inverted_index.this | 86, 158, 170 |
| abstract_inverted_index.used | 78 |
| abstract_inverted_index.were | 96 |
| abstract_inverted_index.with | 93, 183 |
| abstract_inverted_index.ABSA, | 127 |
| abstract_inverted_index.about | 19 |
| abstract_inverted_index.along | 182 |
| abstract_inverted_index.among | 35 |
| abstract_inverted_index.based | 147, 156 |
| abstract_inverted_index.drawn | 98 |
| abstract_inverted_index.focus | 52 |
| abstract_inverted_index.good, | 23 |
| abstract_inverted_index.helps | 58 |
| abstract_inverted_index.known | 5 |
| abstract_inverted_index.other | 36 |
| abstract_inverted_index.study | 88 |
| abstract_inverted_index.their | 71 |
| abstract_inverted_index.these | 112 |
| abstract_inverted_index.using | 131 |
| abstract_inverted_index.which | 57, 103 |
| abstract_inverted_index.better | 62 |
| abstract_inverted_index.blogs, | 34 |
| abstract_inverted_index.covers | 40 |
| abstract_inverted_index.models | 177 |
| abstract_inverted_index.review | 87 |
| abstract_inverted_index.study, | 171 |
| abstract_inverted_index.(ABSA). | 89 |
| abstract_inverted_index.article | 39 |
| abstract_inverted_index.aspects | 95 |
| abstract_inverted_index.certain | 142 |
| abstract_inverted_index.company | 25 |
| abstract_inverted_index.covered | 84 |
| abstract_inverted_index.current | 175 |
| abstract_inverted_index.improve | 190 |
| abstract_inverted_index.levels. | 48 |
| abstract_inverted_index.machine | 133 |
| abstract_inverted_index.methods | 77 |
| abstract_inverted_index.mining, | 8 |
| abstract_inverted_index.opinion | 7 |
| abstract_inverted_index.places. | 37 |
| abstract_inverted_index.process | 12 |
| abstract_inverted_index.AI-based | 132 |
| abstract_inverted_index.Twitter, | 29 |
| abstract_inverted_index.analysis | 1, 43, 82 |
| abstract_inverted_index.efficacy | 192 |
| abstract_inverted_index.features | 91 |
| abstract_inverted_index.increase | 123 |
| abstract_inverted_index.learning | 134, 138 |
| abstract_inverted_index.manually | 97 |
| abstract_inverted_index.methods, | 102 |
| abstract_inverted_index.opinions | 18, 69 |
| abstract_inverted_index.overcome | 116 |
| abstract_inverted_index.people's | 17 |
| abstract_inverted_index.recently | 143 |
| abstract_inverted_index.released | 144 |
| abstract_inverted_index.service, | 22 |
| abstract_inverted_index.systems. | 197 |
| abstract_inverted_index.thorough | 42 |
| abstract_inverted_index.websites | 27 |
| abstract_inverted_index.Facebook, | 30 |
| abstract_inverted_index.LinkedIn, | 32 |
| abstract_inverted_index.Sentiment | 0 |
| abstract_inverted_index.analyzing | 16 |
| abstract_inverted_index.decisions | 63 |
| abstract_inverted_index.develops. | 120 |
| abstract_inverted_index.encounter | 178 |
| abstract_inverted_index.examined, | 153 |
| abstract_inverted_index.examining | 65 |
| abstract_inverted_index.gathering | 14 |
| abstract_inverted_index.precision | 194 |
| abstract_inverted_index.products. | 72 |
| abstract_inverted_index.research, | 159 |
| abstract_inverted_index.sentiment | 81 |
| abstract_inverted_index.Instagram, | 31 |
| abstract_inverted_index.Therefore, | 121 |
| abstract_inverted_index.approaches | 75, 146 |
| abstract_inverted_index.artificial | 118 |
| abstract_inverted_index.associated | 92 |
| abstract_inverted_index.conclusion | 168 |
| abstract_inverted_index.consumers' | 66 |
| abstract_inverted_index.operation. | 110 |
| abstract_inverted_index.particular | 21 |
| abstract_inverted_index.viewpoints | 67 |
| abstract_inverted_index.contrasted, | 154 |
| abstract_inverted_index.discovered. | 165 |
| abstract_inverted_index.emphasized, | 181 |
| abstract_inverted_index.error-prone | 109 |
| abstract_inverted_index.researchers | 128 |
| abstract_inverted_index.suggestions | 184 |
| abstract_inverted_index.techniques. | 140 |
| abstract_inverted_index.traditional | 101 |
| abstract_inverted_index.aspect-based | 55, 80 |
| abstract_inverted_index.difficulties | 173 |
| abstract_inverted_index.increasingly | 130 |
| abstract_inverted_index.intelligence | 119 |
| abstract_inverted_index.manuscript's | 50 |
| abstract_inverted_index.restrictions | 113 |
| abstract_inverted_index.Additionally, | 141 |
| abstract_inverted_index.Nevertheless, | 111 |
| abstract_inverted_index.effectiveness | 125 |
| abstract_inverted_index.manufacturing | 59 |
| abstract_inverted_index.methodologies | 163 |
| abstract_inverted_index.organizations | 60 |
| abstract_inverted_index.time-consuming | 107 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.9721841 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |