ASR crack identification in bridges using deep learning and texture analysis Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.istruc.2023.02.042
Alkali-Silica Reaction (ASR), commonly known as 'concrete cancer,' is an expansive reaction occurring over time between aggregate constituents and alkaline hydroxides from cement. As a destructive phenomenon, the need to detect the onset of ASR in concrete structures to ensure their long-term durability and structural integrity is thus evidenced. In the structural health monitoring field, vision-based approaches have been found to be viable, fast, and cost-effective in diagnosing numerous types of cracks using physical attributes and surface patterns. However, achieving high accuracy in detecting ASR cracks using traditional visual inspection techniques is challenging and time-consuming. Inspired by artificial intelligence technology, this paper proposes and evaluates a two-phase computer vision procedure for detecting and classifying ASR cracks utilizing a collection of ASR images recorded from several bridges in Queensland, Australia. In the first phase, the procedure compares common pre-trained CNN models to investigate their capability in classifying ASR cracks and to select the best-performed model. In the second phase, a novel Feature Enhancement Process (FEP) was first proposed to increase the contrast between ASR cracks and the heavily textured backgrounds within the images. Next, to better highlight the ASR crack features, the feature-adjusted images are processed further through different texture analysis algorithms including: (i) Texture Morphology, (ii) Adaptive thresholding, and (iii) Local range filtering. The study shows that the proposed FEP can improve the ASR crack classification accuracy of InceptionV3, which is the best CNN model selected from Phase 1, from 90.9% to 92.48%. Furthermore, by combining FEP with texture morphology, a robust two-stage tool for assessing ASR cracks can be made with an impressive validation accuracy of 94.07%. This research contributes towards the application of novel AI deep learning technology in providing cost-effective autonomous ASR crack classification tools to support the owners and managers of civil public works assets and other constructed infrastructures.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.istruc.2023.02.042
- OA Status
- hybrid
- Cited By
- 31
- References
- 33
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4321180431
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4321180431Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.istruc.2023.02.042Digital Object Identifier
- Title
-
ASR crack identification in bridges using deep learning and texture analysisWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-02-17Full publication date if available
- Authors
-
Andy Nguyễn, Vahidreza Gharehbaghi, Ngoc Thach Le, Lucinda Sterling, Umar Inayat Chaudhry, Shane CrawfordList of authors in order
- Landing page
-
https://doi.org/10.1016/j.istruc.2023.02.042Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.istruc.2023.02.042Direct OA link when available
- Concepts
-
Feature (linguistics), Computer science, Thresholding, Artificial intelligence, Expansive, Texture (cosmology), Durability, Process (computing), Pattern recognition (psychology), Identification (biology), Alkali–silica reaction, Aggregate (composite), Computer vision, Materials science, Image (mathematics), Database, Composite material, Philosophy, Biology, Operating system, Botany, Compressive strength, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
31Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 10, 2024: 12, 2023: 9Per-year citation counts (last 5 years)
- References (count)
-
33Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4321180431 |
|---|---|
| doi | https://doi.org/10.1016/j.istruc.2023.02.042 |
| ids.doi | https://doi.org/10.1016/j.istruc.2023.02.042 |
| ids.openalex | https://openalex.org/W4321180431 |
| fwci | 6.33971651 |
| type | article |
| title | ASR crack identification in bridges using deep learning and texture analysis |
| biblio.issue | |
| biblio.volume | 50 |
| biblio.last_page | 507 |
| biblio.first_page | 494 |
| topics[0].id | https://openalex.org/T11606 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Infrastructure Maintenance and Monitoring |
| topics[1].id | https://openalex.org/T11850 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9991000294685364 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Concrete Corrosion and Durability |
| topics[2].id | https://openalex.org/T12169 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9936000108718872 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2210 |
| topics[2].subfield.display_name | Mechanical Engineering |
| topics[2].display_name | Non-Destructive Testing Techniques |
| funders[0].id | https://openalex.org/F4320320985 |
| funders[0].ror | https://ror.org/04sjbnx57 |
| funders[0].display_name | University of Southern Queensland |
| funders[1].id | https://openalex.org/F4320335345 |
| funders[1].ror | https://ror.org/024ws6f80 |
| funders[1].display_name | Department of Transport and Main Roads, Queensland Government |
| is_xpac | False |
| apc_list.value | 3160 |
| apc_list.currency | USD |
| apc_list.value_usd | 3160 |
| apc_paid.value | 3160 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3160 |
| concepts[0].id | https://openalex.org/C2776401178 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6585901379585266 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[0].display_name | Feature (linguistics) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6531906127929688 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C191178318 |
| concepts[2].level | 3 |
| concepts[2].score | 0.646948516368866 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2256906 |
| concepts[2].display_name | Thresholding |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5796176791191101 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C2780502288 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5551663041114807 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q28838156 |
| concepts[4].display_name | Expansive |
| concepts[5].id | https://openalex.org/C2781195486 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5437520742416382 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q289436 |
| concepts[5].display_name | Texture (cosmology) |
| concepts[6].id | https://openalex.org/C104304963 |
| concepts[6].level | 2 |
| concepts[6].score | 0.492331862449646 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5316114 |
| concepts[6].display_name | Durability |
| concepts[7].id | https://openalex.org/C98045186 |
| concepts[7].level | 2 |
| concepts[7].score | 0.49064913392066956 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[7].display_name | Process (computing) |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.470339834690094 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C116834253 |
| concepts[9].level | 2 |
| concepts[9].score | 0.44751641154289246 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[9].display_name | Identification (biology) |
| concepts[10].id | https://openalex.org/C102336505 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4213978946208954 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2166525 |
| concepts[10].display_name | Alkali–silica reaction |
| concepts[11].id | https://openalex.org/C4679612 |
| concepts[11].level | 2 |
| concepts[11].score | 0.39147183299064636 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q866298 |
| concepts[11].display_name | Aggregate (composite) |
| concepts[12].id | https://openalex.org/C31972630 |
| concepts[12].level | 1 |
| concepts[12].score | 0.32718777656555176 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[12].display_name | Computer vision |
| concepts[13].id | https://openalex.org/C192562407 |
| concepts[13].level | 0 |
| concepts[13].score | 0.28514623641967773 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[13].display_name | Materials science |
| concepts[14].id | https://openalex.org/C115961682 |
| concepts[14].level | 2 |
| concepts[14].score | 0.21700692176818848 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[14].display_name | Image (mathematics) |
| concepts[15].id | https://openalex.org/C77088390 |
| concepts[15].level | 1 |
| concepts[15].score | 0.1501939296722412 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[15].display_name | Database |
| concepts[16].id | https://openalex.org/C159985019 |
| concepts[16].level | 1 |
| concepts[16].score | 0.13741564750671387 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[16].display_name | Composite material |
| concepts[17].id | https://openalex.org/C138885662 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[17].display_name | Philosophy |
| concepts[18].id | https://openalex.org/C86803240 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[18].display_name | Biology |
| concepts[19].id | https://openalex.org/C111919701 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[19].display_name | Operating system |
| concepts[20].id | https://openalex.org/C59822182 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[20].display_name | Botany |
| concepts[21].id | https://openalex.org/C30407753 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q186191 |
| concepts[21].display_name | Compressive strength |
| concepts[22].id | https://openalex.org/C41895202 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[22].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/feature |
| keywords[0].score | 0.6585901379585266 |
| keywords[0].display_name | Feature (linguistics) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6531906127929688 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/thresholding |
| keywords[2].score | 0.646948516368866 |
| keywords[2].display_name | Thresholding |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5796176791191101 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/expansive |
| keywords[4].score | 0.5551663041114807 |
| keywords[4].display_name | Expansive |
| keywords[5].id | https://openalex.org/keywords/texture |
| keywords[5].score | 0.5437520742416382 |
| keywords[5].display_name | Texture (cosmology) |
| keywords[6].id | https://openalex.org/keywords/durability |
| keywords[6].score | 0.492331862449646 |
| keywords[6].display_name | Durability |
| keywords[7].id | https://openalex.org/keywords/process |
| keywords[7].score | 0.49064913392066956 |
| keywords[7].display_name | Process (computing) |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.470339834690094 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/identification |
| keywords[9].score | 0.44751641154289246 |
| keywords[9].display_name | Identification (biology) |
| keywords[10].id | https://openalex.org/keywords/alkali–silica-reaction |
| keywords[10].score | 0.4213978946208954 |
| keywords[10].display_name | Alkali–silica reaction |
| keywords[11].id | https://openalex.org/keywords/aggregate |
| keywords[11].score | 0.39147183299064636 |
| keywords[11].display_name | Aggregate (composite) |
| keywords[12].id | https://openalex.org/keywords/computer-vision |
| keywords[12].score | 0.32718777656555176 |
| keywords[12].display_name | Computer vision |
| keywords[13].id | https://openalex.org/keywords/materials-science |
| keywords[13].score | 0.28514623641967773 |
| keywords[13].display_name | Materials science |
| keywords[14].id | https://openalex.org/keywords/image |
| keywords[14].score | 0.21700692176818848 |
| keywords[14].display_name | Image (mathematics) |
| keywords[15].id | https://openalex.org/keywords/database |
| keywords[15].score | 0.1501939296722412 |
| keywords[15].display_name | Database |
| keywords[16].id | https://openalex.org/keywords/composite-material |
| keywords[16].score | 0.13741564750671387 |
| keywords[16].display_name | Composite material |
| language | en |
| locations[0].id | doi:10.1016/j.istruc.2023.02.042 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2898442875 |
| locations[0].source.issn | 2352-0124 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2352-0124 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Structures |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Structures |
| locations[0].landing_page_url | https://doi.org/10.1016/j.istruc.2023.02.042 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5030571478 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8739-8207 |
| authorships[0].author.display_name | Andy Nguyễn |
| authorships[0].countries | AU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I185523456 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Engineering, University of Southern Queensland, Queensland, Australia |
| authorships[0].institutions[0].id | https://openalex.org/I185523456 |
| authorships[0].institutions[0].ror | https://ror.org/04sjbnx57 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I185523456 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | University of Southern Queensland |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Andy Nguyen |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | School of Engineering, University of Southern Queensland, Queensland, Australia |
| authorships[1].author.id | https://openalex.org/A5009611594 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6831-313X |
| authorships[1].author.display_name | Vahidreza Gharehbaghi |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I146416000 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Civil Engineering, University of Kansas, Lawrence, USA |
| authorships[1].institutions[0].id | https://openalex.org/I146416000 |
| authorships[1].institutions[0].ror | https://ror.org/001tmjg57 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I146416000 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Kansas |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Vahidreza Gharehbaghi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Civil Engineering, University of Kansas, Lawrence, USA |
| authorships[2].author.id | https://openalex.org/A5042094599 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8477-5222 |
| authorships[2].author.display_name | Ngoc Thach Le |
| authorships[2].countries | VN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I64519617 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Hydraulic Engineering, Hanoi University of Civil Engineering, Hanoi, Vietnam |
| authorships[2].institutions[0].id | https://openalex.org/I64519617 |
| authorships[2].institutions[0].ror | https://ror.org/01mxx0e62 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I64519617 |
| authorships[2].institutions[0].country_code | VN |
| authorships[2].institutions[0].display_name | Hanoi University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ngoc Thach Le |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Hydraulic Engineering, Hanoi University of Civil Engineering, Hanoi, Vietnam |
| authorships[3].author.id | https://openalex.org/A5071119533 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Lucinda Sterling |
| authorships[3].affiliations[0].raw_affiliation_string | Harrison Infrastructure Group, Queensland, Australia |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Lucinda Sterling |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Harrison Infrastructure Group, Queensland, Australia |
| authorships[4].author.id | https://openalex.org/A5067941819 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Umar Inayat Chaudhry |
| authorships[4].affiliations[0].raw_affiliation_string | Sultana Research and Development, Queensland, Australia |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Umar Inayat Chaudhry |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Sultana Research and Development, Queensland, Australia |
| authorships[5].author.id | https://openalex.org/A5076622901 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7588-5283 |
| authorships[5].author.display_name | Shane Crawford |
| authorships[5].affiliations[0].raw_affiliation_string | RoadTek, Department of Transport and Main Roads, Queensland, Australia |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Shane Crawford |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | RoadTek, Department of Transport and Main Roads, Queensland, Australia |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.istruc.2023.02.042 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | ASR crack identification in bridges using deep learning and texture analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11606 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Infrastructure Maintenance and Monitoring |
| related_works | https://openalex.org/W2352180411, https://openalex.org/W2380892508, https://openalex.org/W2386194254, https://openalex.org/W1567463853, https://openalex.org/W159888992, https://openalex.org/W2161251670, https://openalex.org/W1458806294, https://openalex.org/W2366942712, https://openalex.org/W2055013440, https://openalex.org/W2166238017 |
| cited_by_count | 31 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 10 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 12 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 9 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.istruc.2023.02.042 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2898442875 |
| best_oa_location.source.issn | 2352-0124 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2352-0124 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Structures |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Structures |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.istruc.2023.02.042 |
| primary_location.id | doi:10.1016/j.istruc.2023.02.042 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2898442875 |
| primary_location.source.issn | 2352-0124 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2352-0124 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Structures |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Structures |
| primary_location.landing_page_url | https://doi.org/10.1016/j.istruc.2023.02.042 |
| publication_date | 2023-02-17 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3198468001, https://openalex.org/W2093396074, https://openalex.org/W2779497038, https://openalex.org/W2801492038, https://openalex.org/W2027924549, https://openalex.org/W2489837679, https://openalex.org/W3027871329, https://openalex.org/W2746630325, https://openalex.org/W7043331187, https://openalex.org/W3183614419, https://openalex.org/W2057727798, https://openalex.org/W2076063813, https://openalex.org/W2055311577, https://openalex.org/W6637224122, https://openalex.org/W2922073063, https://openalex.org/W3181962999, https://openalex.org/W6618479062, https://openalex.org/W617681503, https://openalex.org/W4224013143, https://openalex.org/W3153560668, https://openalex.org/W6611526857, https://openalex.org/W2887597701, https://openalex.org/W2810123099, https://openalex.org/W3024739675, https://openalex.org/W3170871823, https://openalex.org/W2598457882, https://openalex.org/W4246048221, https://openalex.org/W2988542855, https://openalex.org/W4226196938, https://openalex.org/W3200752113, https://openalex.org/W3164767736, https://openalex.org/W1626565179, https://openalex.org/W2975653430 |
| referenced_works_count | 33 |
| abstract_inverted_index.a | 24, 105, 117, 158, 250 |
| abstract_inverted_index.1, | 238 |
| abstract_inverted_index.AI | 276 |
| abstract_inverted_index.As | 23 |
| abstract_inverted_index.In | 49, 129, 154 |
| abstract_inverted_index.an | 9, 262 |
| abstract_inverted_index.as | 5 |
| abstract_inverted_index.be | 61, 259 |
| abstract_inverted_index.by | 96, 244 |
| abstract_inverted_index.in | 35, 66, 82, 126, 144, 280 |
| abstract_inverted_index.is | 8, 46, 91, 230 |
| abstract_inverted_index.of | 33, 70, 119, 227, 266, 274, 294 |
| abstract_inverted_index.to | 29, 38, 60, 140, 149, 167, 183, 241, 288 |
| abstract_inverted_index.(i) | 202 |
| abstract_inverted_index.ASR | 34, 84, 114, 120, 146, 172, 187, 223, 256, 284 |
| abstract_inverted_index.CNN | 138, 233 |
| abstract_inverted_index.FEP | 219, 246 |
| abstract_inverted_index.The | 213 |
| abstract_inverted_index.and | 18, 43, 64, 75, 93, 103, 112, 148, 174, 208, 292, 299 |
| abstract_inverted_index.are | 193 |
| abstract_inverted_index.can | 220, 258 |
| abstract_inverted_index.for | 110, 254 |
| abstract_inverted_index.the | 27, 31, 50, 130, 133, 151, 155, 169, 175, 180, 186, 190, 217, 222, 231, 272, 290 |
| abstract_inverted_index.was | 164 |
| abstract_inverted_index.(ii) | 205 |
| abstract_inverted_index.This | 268 |
| abstract_inverted_index.been | 58 |
| abstract_inverted_index.best | 232 |
| abstract_inverted_index.deep | 277 |
| abstract_inverted_index.from | 21, 123, 236, 239 |
| abstract_inverted_index.have | 57 |
| abstract_inverted_index.high | 80 |
| abstract_inverted_index.made | 260 |
| abstract_inverted_index.need | 28 |
| abstract_inverted_index.over | 13 |
| abstract_inverted_index.that | 216 |
| abstract_inverted_index.this | 100 |
| abstract_inverted_index.thus | 47 |
| abstract_inverted_index.time | 14 |
| abstract_inverted_index.tool | 253 |
| abstract_inverted_index.with | 247, 261 |
| abstract_inverted_index.(FEP) | 163 |
| abstract_inverted_index.(iii) | 209 |
| abstract_inverted_index.90.9% | 240 |
| abstract_inverted_index.Local | 210 |
| abstract_inverted_index.Next, | 182 |
| abstract_inverted_index.Phase | 237 |
| abstract_inverted_index.civil | 295 |
| abstract_inverted_index.crack | 188, 224, 285 |
| abstract_inverted_index.fast, | 63 |
| abstract_inverted_index.first | 131, 165 |
| abstract_inverted_index.found | 59 |
| abstract_inverted_index.known | 4 |
| abstract_inverted_index.model | 234 |
| abstract_inverted_index.novel | 159, 275 |
| abstract_inverted_index.onset | 32 |
| abstract_inverted_index.other | 300 |
| abstract_inverted_index.paper | 101 |
| abstract_inverted_index.range | 211 |
| abstract_inverted_index.shows | 215 |
| abstract_inverted_index.study | 214 |
| abstract_inverted_index.their | 40, 142 |
| abstract_inverted_index.tools | 287 |
| abstract_inverted_index.types | 69 |
| abstract_inverted_index.using | 72, 86 |
| abstract_inverted_index.which | 229 |
| abstract_inverted_index.works | 297 |
| abstract_inverted_index.(ASR), | 2 |
| abstract_inverted_index.assets | 298 |
| abstract_inverted_index.better | 184 |
| abstract_inverted_index.common | 136 |
| abstract_inverted_index.cracks | 71, 85, 115, 147, 173, 257 |
| abstract_inverted_index.detect | 30 |
| abstract_inverted_index.ensure | 39 |
| abstract_inverted_index.field, | 54 |
| abstract_inverted_index.health | 52 |
| abstract_inverted_index.images | 121, 192 |
| abstract_inverted_index.model. | 153 |
| abstract_inverted_index.models | 139 |
| abstract_inverted_index.owners | 291 |
| abstract_inverted_index.phase, | 132, 157 |
| abstract_inverted_index.public | 296 |
| abstract_inverted_index.robust | 251 |
| abstract_inverted_index.second | 156 |
| abstract_inverted_index.select | 150 |
| abstract_inverted_index.vision | 108 |
| abstract_inverted_index.visual | 88 |
| abstract_inverted_index.within | 179 |
| abstract_inverted_index.92.48%. | 242 |
| abstract_inverted_index.94.07%. | 267 |
| abstract_inverted_index.Feature | 160 |
| abstract_inverted_index.Process | 162 |
| abstract_inverted_index.Texture | 203 |
| abstract_inverted_index.between | 15, 171 |
| abstract_inverted_index.bridges | 125 |
| abstract_inverted_index.cement. | 22 |
| abstract_inverted_index.further | 195 |
| abstract_inverted_index.heavily | 176 |
| abstract_inverted_index.images. | 181 |
| abstract_inverted_index.improve | 221 |
| abstract_inverted_index.several | 124 |
| abstract_inverted_index.support | 289 |
| abstract_inverted_index.surface | 76 |
| abstract_inverted_index.texture | 198, 248 |
| abstract_inverted_index.through | 196 |
| abstract_inverted_index.towards | 271 |
| abstract_inverted_index.viable, | 62 |
| abstract_inverted_index.Adaptive | 206 |
| abstract_inverted_index.However, | 78 |
| abstract_inverted_index.Inspired | 95 |
| abstract_inverted_index.Reaction | 1 |
| abstract_inverted_index.accuracy | 81, 226, 265 |
| abstract_inverted_index.alkaline | 19 |
| abstract_inverted_index.analysis | 199 |
| abstract_inverted_index.cancer,' | 7 |
| abstract_inverted_index.commonly | 3 |
| abstract_inverted_index.compares | 135 |
| abstract_inverted_index.computer | 107 |
| abstract_inverted_index.concrete | 36 |
| abstract_inverted_index.contrast | 170 |
| abstract_inverted_index.increase | 168 |
| abstract_inverted_index.learning | 278 |
| abstract_inverted_index.managers | 293 |
| abstract_inverted_index.numerous | 68 |
| abstract_inverted_index.physical | 73 |
| abstract_inverted_index.proposed | 166, 218 |
| abstract_inverted_index.proposes | 102 |
| abstract_inverted_index.reaction | 11 |
| abstract_inverted_index.recorded | 122 |
| abstract_inverted_index.research | 269 |
| abstract_inverted_index.selected | 235 |
| abstract_inverted_index.textured | 177 |
| abstract_inverted_index.'concrete | 6 |
| abstract_inverted_index.achieving | 79 |
| abstract_inverted_index.aggregate | 16 |
| abstract_inverted_index.assessing | 255 |
| abstract_inverted_index.combining | 245 |
| abstract_inverted_index.detecting | 83, 111 |
| abstract_inverted_index.different | 197 |
| abstract_inverted_index.evaluates | 104 |
| abstract_inverted_index.expansive | 10 |
| abstract_inverted_index.features, | 189 |
| abstract_inverted_index.highlight | 185 |
| abstract_inverted_index.integrity | 45 |
| abstract_inverted_index.long-term | 41 |
| abstract_inverted_index.occurring | 12 |
| abstract_inverted_index.patterns. | 77 |
| abstract_inverted_index.procedure | 109, 134 |
| abstract_inverted_index.processed | 194 |
| abstract_inverted_index.providing | 281 |
| abstract_inverted_index.two-phase | 106 |
| abstract_inverted_index.two-stage | 252 |
| abstract_inverted_index.utilizing | 116 |
| abstract_inverted_index.Australia. | 128 |
| abstract_inverted_index.algorithms | 200 |
| abstract_inverted_index.approaches | 56 |
| abstract_inverted_index.artificial | 97 |
| abstract_inverted_index.attributes | 74 |
| abstract_inverted_index.autonomous | 283 |
| abstract_inverted_index.capability | 143 |
| abstract_inverted_index.collection | 118 |
| abstract_inverted_index.diagnosing | 67 |
| abstract_inverted_index.durability | 42 |
| abstract_inverted_index.evidenced. | 48 |
| abstract_inverted_index.filtering. | 212 |
| abstract_inverted_index.hydroxides | 20 |
| abstract_inverted_index.impressive | 263 |
| abstract_inverted_index.including: | 201 |
| abstract_inverted_index.inspection | 89 |
| abstract_inverted_index.monitoring | 53 |
| abstract_inverted_index.structural | 44, 51 |
| abstract_inverted_index.structures | 37 |
| abstract_inverted_index.techniques | 90 |
| abstract_inverted_index.technology | 279 |
| abstract_inverted_index.validation | 264 |
| abstract_inverted_index.Enhancement | 161 |
| abstract_inverted_index.Morphology, | 204 |
| abstract_inverted_index.Queensland, | 127 |
| abstract_inverted_index.application | 273 |
| abstract_inverted_index.backgrounds | 178 |
| abstract_inverted_index.challenging | 92 |
| abstract_inverted_index.classifying | 113, 145 |
| abstract_inverted_index.constructed | 301 |
| abstract_inverted_index.contributes | 270 |
| abstract_inverted_index.destructive | 25 |
| abstract_inverted_index.investigate | 141 |
| abstract_inverted_index.morphology, | 249 |
| abstract_inverted_index.phenomenon, | 26 |
| abstract_inverted_index.pre-trained | 137 |
| abstract_inverted_index.technology, | 99 |
| abstract_inverted_index.traditional | 87 |
| abstract_inverted_index.Furthermore, | 243 |
| abstract_inverted_index.InceptionV3, | 228 |
| abstract_inverted_index.constituents | 17 |
| abstract_inverted_index.intelligence | 98 |
| abstract_inverted_index.vision-based | 55 |
| abstract_inverted_index.Alkali-Silica | 0 |
| abstract_inverted_index.thresholding, | 207 |
| abstract_inverted_index.best-performed | 152 |
| abstract_inverted_index.classification | 225, 286 |
| abstract_inverted_index.cost-effective | 65, 282 |
| abstract_inverted_index.time-consuming. | 94 |
| abstract_inverted_index.feature-adjusted | 191 |
| abstract_inverted_index.infrastructures. | 302 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5030571478 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I185523456 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.6499999761581421 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.96628918 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |