Assembly Integrity Detection Based on 3D CAD Model Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1109/access.2024.3398803
Incomplete assembly could affect product quality and performance, and even cause inestimable losses. In the industrial environment, the lack of image datasets and the inability to obtain the physical assembly in advance is a challenge for machine vision to detect assembly integrity. We propose a 3D CAD model-based method to detect assembly integrity without physical assembly. 3D CAD models are utilized for 2D image rendering and dataset construction, and automatic labeling can be achieved through edge extraction and minimum enclosing rectangle fitting rather than by hand. An end-to-end detection neural network based on Faster-RCNN is trained in the datasets. The VGG network as detection neural network to extract features, and the generated feature map determines the candidate detection region through RPN. Fast-RCNN then detects the object in the image. Finally, by detecting images from multiple views with dimension reduction and comparing them with prior knowledge, we can judge whether there are missing parts in the assembly. Experimental results show that the network model can accurately detect the integrity of the assembly, and the average accuracy (mAP) reaches 88.9%. The method can also provide theoretical guidance for future physical assembly and shorten the experimental process.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2024.3398803
- https://ieeexplore.ieee.org/ielx7/6287639/6514899/10526237.pdf
- OA Status
- gold
- Cited By
- 1
- References
- 26
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4396754418
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4396754418Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2024.3398803Digital Object Identifier
- Title
-
Assembly Integrity Detection Based on 3D CAD ModelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Fanwu Meng, Di Wu, Tao Gong, Xiangyi XiangList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2024.3398803Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10526237.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10526237.pdfDirect OA link when available
- Concepts
-
Computer science, Artificial intelligence, CAD, Rendering (computer graphics), Object detection, Pattern recognition (psychology), Feature extraction, Computer vision, Process (computing), Artificial neural network, Data mining, Engineering drawing, Operating system, EngineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
26Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4396754418 |
|---|---|
| doi | https://doi.org/10.1109/access.2024.3398803 |
| ids.doi | https://doi.org/10.1109/access.2024.3398803 |
| ids.openalex | https://openalex.org/W4396754418 |
| fwci | 0.68104183 |
| type | article |
| title | Assembly Integrity Detection Based on 3D CAD Model |
| biblio.issue | |
| biblio.volume | 12 |
| biblio.last_page | 66452 |
| biblio.first_page | 66442 |
| topics[0].id | https://openalex.org/T12111 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9980999827384949 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Industrial Vision Systems and Defect Detection |
| topics[1].id | https://openalex.org/T11159 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.994700014591217 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2209 |
| topics[1].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[1].display_name | Manufacturing Process and Optimization |
| topics[2].id | https://openalex.org/T14339 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9815999865531921 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image Processing and 3D Reconstruction |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8041344881057739 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7034006118774414 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C194789388 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7017806768417358 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17855283 |
| concepts[2].display_name | CAD |
| concepts[3].id | https://openalex.org/C205711294 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5745339393615723 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q176953 |
| concepts[3].display_name | Rendering (computer graphics) |
| concepts[4].id | https://openalex.org/C2776151529 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5284709334373474 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[4].display_name | Object detection |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5164728164672852 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C52622490 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5142468810081482 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[6].display_name | Feature extraction |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.507241427898407 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C98045186 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4817383587360382 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[8].display_name | Process (computing) |
| concepts[9].id | https://openalex.org/C50644808 |
| concepts[9].level | 2 |
| concepts[9].score | 0.45482802391052246 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[9].display_name | Artificial neural network |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.32766810059547424 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C199639397 |
| concepts[11].level | 1 |
| concepts[11].score | 0.11653953790664673 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1788588 |
| concepts[11].display_name | Engineering drawing |
| concepts[12].id | https://openalex.org/C111919701 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[12].display_name | Operating system |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8041344881057739 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7034006118774414 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/cad |
| keywords[2].score | 0.7017806768417358 |
| keywords[2].display_name | CAD |
| keywords[3].id | https://openalex.org/keywords/rendering |
| keywords[3].score | 0.5745339393615723 |
| keywords[3].display_name | Rendering (computer graphics) |
| keywords[4].id | https://openalex.org/keywords/object-detection |
| keywords[4].score | 0.5284709334373474 |
| keywords[4].display_name | Object detection |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.5164728164672852 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/feature-extraction |
| keywords[6].score | 0.5142468810081482 |
| keywords[6].display_name | Feature extraction |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.507241427898407 |
| keywords[7].display_name | Computer vision |
| keywords[8].id | https://openalex.org/keywords/process |
| keywords[8].score | 0.4817383587360382 |
| keywords[8].display_name | Process (computing) |
| keywords[9].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[9].score | 0.45482802391052246 |
| keywords[9].display_name | Artificial neural network |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.32766810059547424 |
| keywords[10].display_name | Data mining |
| keywords[11].id | https://openalex.org/keywords/engineering-drawing |
| keywords[11].score | 0.11653953790664673 |
| keywords[11].display_name | Engineering drawing |
| language | en |
| locations[0].id | doi:10.1109/access.2024.3398803 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10526237.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2024.3398803 |
| locations[1].id | pmh:oai:doaj.org/article:73a8ace28ff147f8a1913fa0a8783c74 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 12, Pp 66442-66452 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/73a8ace28ff147f8a1913fa0a8783c74 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5017738812 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6779-9975 |
| authorships[0].author.display_name | Fanwu Meng |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I125839683 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China |
| authorships[0].institutions[0].id | https://openalex.org/I125839683 |
| authorships[0].institutions[0].ror | https://ror.org/01skt4w74 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I125839683, https://openalex.org/I890469752 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing Institute of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fanwu Meng |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China |
| authorships[1].author.id | https://openalex.org/A5102880909 |
| authorships[1].author.orcid | https://orcid.org/0009-0009-7720-0311 |
| authorships[1].author.display_name | Di Wu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I125839683 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China |
| authorships[1].institutions[0].id | https://openalex.org/I125839683 |
| authorships[1].institutions[0].ror | https://ror.org/01skt4w74 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I125839683, https://openalex.org/I890469752 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beijing Institute of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Di Wu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China |
| authorships[2].author.id | https://openalex.org/A5114910706 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0026-6813 |
| authorships[2].author.display_name | Tao Gong |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I125839683 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China |
| authorships[2].institutions[0].id | https://openalex.org/I125839683 |
| authorships[2].institutions[0].ror | https://ror.org/01skt4w74 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I125839683, https://openalex.org/I890469752 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Beijing Institute of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tao Gong |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China |
| authorships[3].author.id | https://openalex.org/A5096971657 |
| authorships[3].author.orcid | https://orcid.org/0009-0009-6171-0026 |
| authorships[3].author.display_name | Xiangyi Xiang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I125839683 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China |
| authorships[3].institutions[0].id | https://openalex.org/I125839683 |
| authorships[3].institutions[0].ror | https://ror.org/01skt4w74 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I125839683, https://openalex.org/I890469752 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Beijing Institute of Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Xiangyi Xiang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10526237.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Assembly Integrity Detection Based on 3D CAD Model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12111 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9980999827384949 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Industrial Vision Systems and Defect Detection |
| related_works | https://openalex.org/W2334610590, https://openalex.org/W2320366403, https://openalex.org/W3204197061, https://openalex.org/W4251350712, https://openalex.org/W637098845, https://openalex.org/W2410116073, https://openalex.org/W3044972437, https://openalex.org/W4287707480, https://openalex.org/W2275866607, https://openalex.org/W3198805702 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2024.3398803 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10526237.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2024.3398803 |
| primary_location.id | doi:10.1109/access.2024.3398803 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10526237.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2024.3398803 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2159498975, https://openalex.org/W2119605622, https://openalex.org/W2117228865, https://openalex.org/W3131713303, https://openalex.org/W4213431780, https://openalex.org/W4206251453, https://openalex.org/W2381063886, https://openalex.org/W2392026236, https://openalex.org/W3210586215, https://openalex.org/W2100495367, https://openalex.org/W4210703660, https://openalex.org/W2899750794, https://openalex.org/W2798589477, https://openalex.org/W2980382668, https://openalex.org/W6637373629, https://openalex.org/W2145023731, https://openalex.org/W4250819038, https://openalex.org/W2102605133, https://openalex.org/W1536680647, https://openalex.org/W639708223, https://openalex.org/W2963037989, https://openalex.org/W2570343428, https://openalex.org/W6750227808, https://openalex.org/W2193145675, https://openalex.org/W3106250896, https://openalex.org/W4293584584 |
| referenced_works_count | 26 |
| abstract_inverted_index.a | 33, 44 |
| abstract_inverted_index.2D | 62 |
| abstract_inverted_index.3D | 45, 56 |
| abstract_inverted_index.An | 86 |
| abstract_inverted_index.In | 13 |
| abstract_inverted_index.We | 42 |
| abstract_inverted_index.as | 102 |
| abstract_inverted_index.be | 72 |
| abstract_inverted_index.by | 84, 130 |
| abstract_inverted_index.in | 30, 96, 126, 153 |
| abstract_inverted_index.is | 32, 94 |
| abstract_inverted_index.of | 19, 168 |
| abstract_inverted_index.on | 92 |
| abstract_inverted_index.to | 25, 38, 49, 106 |
| abstract_inverted_index.we | 145 |
| abstract_inverted_index.CAD | 46, 57 |
| abstract_inverted_index.The | 99, 178 |
| abstract_inverted_index.VGG | 100 |
| abstract_inverted_index.and | 6, 8, 22, 65, 68, 77, 109, 139, 171, 189 |
| abstract_inverted_index.are | 59, 150 |
| abstract_inverted_index.can | 71, 146, 163, 180 |
| abstract_inverted_index.for | 35, 61, 185 |
| abstract_inverted_index.map | 113 |
| abstract_inverted_index.the | 14, 17, 23, 27, 97, 110, 115, 124, 127, 154, 160, 166, 169, 172, 191 |
| abstract_inverted_index.RPN. | 120 |
| abstract_inverted_index.also | 181 |
| abstract_inverted_index.edge | 75 |
| abstract_inverted_index.even | 9 |
| abstract_inverted_index.from | 133 |
| abstract_inverted_index.lack | 18 |
| abstract_inverted_index.show | 158 |
| abstract_inverted_index.than | 83 |
| abstract_inverted_index.that | 159 |
| abstract_inverted_index.them | 141 |
| abstract_inverted_index.then | 122 |
| abstract_inverted_index.with | 136, 142 |
| abstract_inverted_index.(mAP) | 175 |
| abstract_inverted_index.based | 91 |
| abstract_inverted_index.cause | 10 |
| abstract_inverted_index.could | 2 |
| abstract_inverted_index.hand. | 85 |
| abstract_inverted_index.image | 20, 63 |
| abstract_inverted_index.judge | 147 |
| abstract_inverted_index.model | 162 |
| abstract_inverted_index.parts | 152 |
| abstract_inverted_index.prior | 143 |
| abstract_inverted_index.there | 149 |
| abstract_inverted_index.views | 135 |
| abstract_inverted_index.affect | 3 |
| abstract_inverted_index.detect | 39, 50, 165 |
| abstract_inverted_index.future | 186 |
| abstract_inverted_index.image. | 128 |
| abstract_inverted_index.images | 132 |
| abstract_inverted_index.method | 48, 179 |
| abstract_inverted_index.models | 58 |
| abstract_inverted_index.neural | 89, 104 |
| abstract_inverted_index.object | 125 |
| abstract_inverted_index.obtain | 26 |
| abstract_inverted_index.rather | 82 |
| abstract_inverted_index.region | 118 |
| abstract_inverted_index.vision | 37 |
| abstract_inverted_index.advance | 31 |
| abstract_inverted_index.average | 173 |
| abstract_inverted_index.dataset | 66 |
| abstract_inverted_index.detects | 123 |
| abstract_inverted_index.extract | 107 |
| abstract_inverted_index.feature | 112 |
| abstract_inverted_index.fitting | 81 |
| abstract_inverted_index.losses. | 12 |
| abstract_inverted_index.machine | 36 |
| abstract_inverted_index.minimum | 78 |
| abstract_inverted_index.missing | 151 |
| abstract_inverted_index.network | 90, 101, 105, 161 |
| abstract_inverted_index.product | 4 |
| abstract_inverted_index.propose | 43 |
| abstract_inverted_index.provide | 182 |
| abstract_inverted_index.quality | 5 |
| abstract_inverted_index.reaches | 176 |
| abstract_inverted_index.results | 157 |
| abstract_inverted_index.shorten | 190 |
| abstract_inverted_index.through | 74, 119 |
| abstract_inverted_index.trained | 95 |
| abstract_inverted_index.whether | 148 |
| abstract_inverted_index.without | 53 |
| abstract_inverted_index.Finally, | 129 |
| abstract_inverted_index.accuracy | 174 |
| abstract_inverted_index.achieved | 73 |
| abstract_inverted_index.assembly | 1, 29, 40, 51, 188 |
| abstract_inverted_index.datasets | 21 |
| abstract_inverted_index.guidance | 184 |
| abstract_inverted_index.labeling | 70 |
| abstract_inverted_index.multiple | 134 |
| abstract_inverted_index.physical | 28, 54, 187 |
| abstract_inverted_index.process. | 193 |
| abstract_inverted_index.utilized | 60 |
| abstract_inverted_index.Fast-RCNN | 121 |
| abstract_inverted_index.assembly, | 170 |
| abstract_inverted_index.assembly. | 55, 155 |
| abstract_inverted_index.automatic | 69 |
| abstract_inverted_index.candidate | 116 |
| abstract_inverted_index.challenge | 34 |
| abstract_inverted_index.comparing | 140 |
| abstract_inverted_index.datasets. | 98 |
| abstract_inverted_index.detecting | 131 |
| abstract_inverted_index.detection | 88, 103, 117 |
| abstract_inverted_index.dimension | 137 |
| abstract_inverted_index.enclosing | 79 |
| abstract_inverted_index.features, | 108 |
| abstract_inverted_index.generated | 111 |
| abstract_inverted_index.inability | 24 |
| abstract_inverted_index.integrity | 52, 167 |
| abstract_inverted_index.rectangle | 80 |
| abstract_inverted_index.reduction | 138 |
| abstract_inverted_index.rendering | 64 |
| abstract_inverted_index.Incomplete | 0 |
| abstract_inverted_index.accurately | 164 |
| abstract_inverted_index.determines | 114 |
| abstract_inverted_index.end-to-end | 87 |
| abstract_inverted_index.extraction | 76 |
| abstract_inverted_index.industrial | 15 |
| abstract_inverted_index.integrity. | 41 |
| abstract_inverted_index.knowledge, | 144 |
| abstract_inverted_index.Faster-RCNN | 93 |
| abstract_inverted_index.inestimable | 11 |
| abstract_inverted_index.model-based | 47 |
| abstract_inverted_index.theoretical | 183 |
| abstract_inverted_index.Experimental | 156 |
| abstract_inverted_index.environment, | 16 |
| abstract_inverted_index.experimental | 192 |
| abstract_inverted_index.performance, | 7 |
| abstract_inverted_index.88.9%. | 177 |
| abstract_inverted_index.construction, | 67 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.5299999713897705 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.644934 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |