Assessing and Enhancing the Robustness of Large Language Models with Task Structure Variations for Logical Reasoning Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2310.09430
Large language models (LLMs), such as LLaMA, Alpaca, Vicuna, GPT-3.5 and GPT-4, have advanced the performance of AI systems on various natural language processing tasks to human-like levels. However, their generalisation and robustness when performing logical reasoning has not been sufficiently assessed. To comprehensively evaluate this ability, we develop three new logical reasoning datasets named "ReClor-plus", "LogiQA-plus" and "LogiQAv2-plus" that extend standard logical reasoning datasets to evaluate the robustness of the LLM's reasoning. For each, we create three subsets: the first with randomly shuffled options, the second with the correct choices replaced by "none of the other options is correct", and the third with a combination of shuffling and substitution. Experiments on these datasets show that these simple augmentations greatly hinder the models' performance. Despite their high performance on the original publicly available datasets, we find that all models perform poorly on these newly constructed datasets. We also demonstrate that introducing task variations into the training set can markedly improve the model's performance on both the original and our developed datasets. Finally, we show that applying logic-driven data augmentation for fine-tuning and prompting can enhance generalisation in both discriminative and generative models, offering a path to improving their robustness for tasks involving logical reasoning. Source code and data are made publicly available at https://github.com/Strong-AI-Lab/Logical-and-abstract-reasoning.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2310.09430
- https://arxiv.org/pdf/2310.09430
- OA Status
- green
- Cited By
- 4
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387764395
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387764395Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2310.09430Digital Object Identifier
- Title
-
Assessing and Enhancing the Robustness of Large Language Models with Task Structure Variations for Logical ReasoningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-13Full publication date if available
- Authors
-
Qiming Bao, G. Gendron, Alex Yuxuan Peng, Wanjun Zhong, Neşet Tan, Yang Chen, Michael Witbrock, Jiamou LiuList of authors in order
- Landing page
-
https://arxiv.org/abs/2310.09430Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2310.09430Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2310.09430Direct OA link when available
- Concepts
-
Computer science, Robustness (evolution), Discriminative model, Artificial intelligence, Logical reasoning, Machine learning, Logical consequence, Generative grammar, Natural language processing, Biochemistry, Gene, ChemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 3, 2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387764395 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2310.09430 |
| ids.doi | https://doi.org/10.48550/arxiv.2310.09430 |
| ids.openalex | https://openalex.org/W4387764395 |
| fwci | |
| type | preprint |
| title | Assessing and Enhancing the Robustness of Large Language Models with Task Structure Variations for Logical Reasoning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.993399977684021 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T12535 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9757999777793884 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and Data Classification |
| topics[2].id | https://openalex.org/T10181 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9757999777793884 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Natural Language Processing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7824336290359497 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C63479239 |
| concepts[1].level | 3 |
| concepts[1].score | 0.71518474817276 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[1].display_name | Robustness (evolution) |
| concepts[2].id | https://openalex.org/C97931131 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5839521288871765 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5282087 |
| concepts[2].display_name | Discriminative model |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5599006414413452 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C43971567 |
| concepts[4].level | 2 |
| concepts[4].score | 0.53841233253479 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3142865 |
| concepts[4].display_name | Logical reasoning |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5053778290748596 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C134752490 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4952966272830963 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q374182 |
| concepts[6].display_name | Logical consequence |
| concepts[7].id | https://openalex.org/C39890363 |
| concepts[7].level | 2 |
| concepts[7].score | 0.42953336238861084 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[7].display_name | Generative grammar |
| concepts[8].id | https://openalex.org/C204321447 |
| concepts[8].level | 1 |
| concepts[8].score | 0.36409854888916016 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[8].display_name | Natural language processing |
| concepts[9].id | https://openalex.org/C55493867 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[9].display_name | Biochemistry |
| concepts[10].id | https://openalex.org/C104317684 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[10].display_name | Gene |
| concepts[11].id | https://openalex.org/C185592680 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[11].display_name | Chemistry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7824336290359497 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/robustness |
| keywords[1].score | 0.71518474817276 |
| keywords[1].display_name | Robustness (evolution) |
| keywords[2].id | https://openalex.org/keywords/discriminative-model |
| keywords[2].score | 0.5839521288871765 |
| keywords[2].display_name | Discriminative model |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5599006414413452 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/logical-reasoning |
| keywords[4].score | 0.53841233253479 |
| keywords[4].display_name | Logical reasoning |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.5053778290748596 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/logical-consequence |
| keywords[6].score | 0.4952966272830963 |
| keywords[6].display_name | Logical consequence |
| keywords[7].id | https://openalex.org/keywords/generative-grammar |
| keywords[7].score | 0.42953336238861084 |
| keywords[7].display_name | Generative grammar |
| keywords[8].id | https://openalex.org/keywords/natural-language-processing |
| keywords[8].score | 0.36409854888916016 |
| keywords[8].display_name | Natural language processing |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2310.09430 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2310.09430 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2310.09430 |
| locations[1].id | doi:10.48550/arxiv.2310.09430 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2310.09430 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5009635346 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1000-7383 |
| authorships[0].author.display_name | Qiming Bao |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bao, Qiming |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5074844252 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2457-934X |
| authorships[1].author.display_name | G. Gendron |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gendron, Gael |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5049443230 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9922-5781 |
| authorships[2].author.display_name | Alex Yuxuan Peng |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Peng, Alex Yuxuan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5019101763 |
| authorships[3].author.orcid | https://orcid.org/0009-0007-2236-228X |
| authorships[3].author.display_name | Wanjun Zhong |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhong, Wanjun |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5062975742 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6201-7295 |
| authorships[4].author.display_name | Neşet Tan |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Tan, Neset |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100350503 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4749-3060 |
| authorships[5].author.display_name | Yang Chen |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Chen, Yang |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5057995059 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-7554-0971 |
| authorships[6].author.display_name | Michael Witbrock |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Witbrock, Michael |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5083914998 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-0824-0899 |
| authorships[7].author.display_name | Jiamou Liu |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Liu, Jiamou |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2310.09430 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-10-20T00:00:00 |
| display_name | Assessing and Enhancing the Robustness of Large Language Models with Task Structure Variations for Logical Reasoning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.993399977684021 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W4389116644, https://openalex.org/W2153315159, https://openalex.org/W3103844505, https://openalex.org/W259157601, https://openalex.org/W4205463238, https://openalex.org/W2761785940, https://openalex.org/W2987280934, https://openalex.org/W4241564561, https://openalex.org/W1510214531, https://openalex.org/W2351976579 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2310.09430 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2310.09430 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2310.09430 |
| primary_location.id | pmh:oai:arXiv.org:2310.09430 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2310.09430 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2310.09430 |
| publication_date | 2023-10-13 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 104, 193 |
| abstract_inverted_index.AI | 17 |
| abstract_inverted_index.To | 42 |
| abstract_inverted_index.We | 146 |
| abstract_inverted_index.as | 5 |
| abstract_inverted_index.at | 212 |
| abstract_inverted_index.by | 92 |
| abstract_inverted_index.in | 186 |
| abstract_inverted_index.is | 98 |
| abstract_inverted_index.of | 16, 69, 94, 106 |
| abstract_inverted_index.on | 19, 111, 128, 141, 163 |
| abstract_inverted_index.to | 25, 65, 195 |
| abstract_inverted_index.we | 47, 75, 134, 172 |
| abstract_inverted_index.For | 73 |
| abstract_inverted_index.all | 137 |
| abstract_inverted_index.and | 10, 31, 57, 100, 108, 167, 181, 189, 206 |
| abstract_inverted_index.are | 208 |
| abstract_inverted_index.can | 157, 183 |
| abstract_inverted_index.for | 179, 199 |
| abstract_inverted_index.has | 37 |
| abstract_inverted_index.new | 50 |
| abstract_inverted_index.not | 38 |
| abstract_inverted_index.our | 168 |
| abstract_inverted_index.set | 156 |
| abstract_inverted_index.the | 14, 67, 70, 79, 85, 88, 95, 101, 121, 129, 154, 160, 165 |
| abstract_inverted_index.also | 147 |
| abstract_inverted_index.been | 39 |
| abstract_inverted_index.both | 164, 187 |
| abstract_inverted_index.code | 205 |
| abstract_inverted_index.data | 177, 207 |
| abstract_inverted_index.find | 135 |
| abstract_inverted_index.have | 12 |
| abstract_inverted_index.high | 126 |
| abstract_inverted_index.into | 153 |
| abstract_inverted_index.made | 209 |
| abstract_inverted_index.path | 194 |
| abstract_inverted_index.show | 114, 173 |
| abstract_inverted_index.such | 4 |
| abstract_inverted_index.task | 151 |
| abstract_inverted_index.that | 59, 115, 136, 149, 174 |
| abstract_inverted_index.this | 45 |
| abstract_inverted_index.when | 33 |
| abstract_inverted_index.with | 81, 87, 103 |
| abstract_inverted_index."none | 93 |
| abstract_inverted_index.LLM's | 71 |
| abstract_inverted_index.Large | 0 |
| abstract_inverted_index.each, | 74 |
| abstract_inverted_index.first | 80 |
| abstract_inverted_index.named | 54 |
| abstract_inverted_index.newly | 143 |
| abstract_inverted_index.other | 96 |
| abstract_inverted_index.tasks | 24, 200 |
| abstract_inverted_index.their | 29, 125, 197 |
| abstract_inverted_index.these | 112, 116, 142 |
| abstract_inverted_index.third | 102 |
| abstract_inverted_index.three | 49, 77 |
| abstract_inverted_index.GPT-4, | 11 |
| abstract_inverted_index.LLaMA, | 6 |
| abstract_inverted_index.Source | 204 |
| abstract_inverted_index.create | 76 |
| abstract_inverted_index.extend | 60 |
| abstract_inverted_index.hinder | 120 |
| abstract_inverted_index.models | 2, 138 |
| abstract_inverted_index.poorly | 140 |
| abstract_inverted_index.second | 86 |
| abstract_inverted_index.simple | 117 |
| abstract_inverted_index.(LLMs), | 3 |
| abstract_inverted_index.Alpaca, | 7 |
| abstract_inverted_index.Despite | 124 |
| abstract_inverted_index.GPT-3.5 | 9 |
| abstract_inverted_index.Vicuna, | 8 |
| abstract_inverted_index.choices | 90 |
| abstract_inverted_index.correct | 89 |
| abstract_inverted_index.develop | 48 |
| abstract_inverted_index.enhance | 184 |
| abstract_inverted_index.greatly | 119 |
| abstract_inverted_index.improve | 159 |
| abstract_inverted_index.levels. | 27 |
| abstract_inverted_index.logical | 35, 51, 62, 202 |
| abstract_inverted_index.model's | 161 |
| abstract_inverted_index.models' | 122 |
| abstract_inverted_index.models, | 191 |
| abstract_inverted_index.natural | 21 |
| abstract_inverted_index.options | 97 |
| abstract_inverted_index.perform | 139 |
| abstract_inverted_index.systems | 18 |
| abstract_inverted_index.various | 20 |
| abstract_inverted_index.Finally, | 171 |
| abstract_inverted_index.However, | 28 |
| abstract_inverted_index.ability, | 46 |
| abstract_inverted_index.advanced | 13 |
| abstract_inverted_index.applying | 175 |
| abstract_inverted_index.datasets | 53, 64, 113 |
| abstract_inverted_index.evaluate | 44, 66 |
| abstract_inverted_index.language | 1, 22 |
| abstract_inverted_index.markedly | 158 |
| abstract_inverted_index.offering | 192 |
| abstract_inverted_index.options, | 84 |
| abstract_inverted_index.original | 130, 166 |
| abstract_inverted_index.publicly | 131, 210 |
| abstract_inverted_index.randomly | 82 |
| abstract_inverted_index.replaced | 91 |
| abstract_inverted_index.shuffled | 83 |
| abstract_inverted_index.standard | 61 |
| abstract_inverted_index.subsets: | 78 |
| abstract_inverted_index.training | 155 |
| abstract_inverted_index.assessed. | 41 |
| abstract_inverted_index.available | 132, 211 |
| abstract_inverted_index.correct", | 99 |
| abstract_inverted_index.datasets, | 133 |
| abstract_inverted_index.datasets. | 145, 170 |
| abstract_inverted_index.developed | 169 |
| abstract_inverted_index.improving | 196 |
| abstract_inverted_index.involving | 201 |
| abstract_inverted_index.prompting | 182 |
| abstract_inverted_index.reasoning | 36, 52, 63 |
| abstract_inverted_index.shuffling | 107 |
| abstract_inverted_index.generative | 190 |
| abstract_inverted_index.human-like | 26 |
| abstract_inverted_index.performing | 34 |
| abstract_inverted_index.processing | 23 |
| abstract_inverted_index.reasoning. | 72, 203 |
| abstract_inverted_index.robustness | 32, 68, 198 |
| abstract_inverted_index.variations | 152 |
| abstract_inverted_index.Experiments | 110 |
| abstract_inverted_index.combination | 105 |
| abstract_inverted_index.constructed | 144 |
| abstract_inverted_index.demonstrate | 148 |
| abstract_inverted_index.fine-tuning | 180 |
| abstract_inverted_index.introducing | 150 |
| abstract_inverted_index.performance | 15, 127, 162 |
| abstract_inverted_index.augmentation | 178 |
| abstract_inverted_index.logic-driven | 176 |
| abstract_inverted_index.performance. | 123 |
| abstract_inverted_index.sufficiently | 40 |
| abstract_inverted_index."LogiQA-plus" | 56 |
| abstract_inverted_index.augmentations | 118 |
| abstract_inverted_index.substitution. | 109 |
| abstract_inverted_index."ReClor-plus", | 55 |
| abstract_inverted_index.discriminative | 188 |
| abstract_inverted_index.generalisation | 30, 185 |
| abstract_inverted_index."LogiQAv2-plus" | 58 |
| abstract_inverted_index.comprehensively | 43 |
| abstract_inverted_index.https://github.com/Strong-AI-Lab/Logical-and-abstract-reasoning. | 213 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.7099999785423279 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile |