Assessing and Quantifying Perceived Trust in Interpretable Clinical Decision Support Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1007/978-3-032-08327-2_10
Technical and ethical concerns impede the establishment of trust among healthcare professionals (HCPs) in developing artificial intelligence (AI)-based decision support. Yet, our understanding of trust models is constrained, and a standard accepted approach to evaluating trust in AI models is still lacking. We introduce a novel methodology to assess and quantify HCPs’ perceived trust in an interpretable machine learning model that serves as clinical decision support for diagnosing COVID-19 cases. Our approach leverages fuzzy cognitive maps (FCMs) to elicit and quantify HCPs’ trust mental models for understanding trust dynamics in clinical diagnosis. Our study reveals that HCPs rely predominantly on their own expertise when interacting with the developed interpretable clinical decision support. Although the model’s interpretations offer limited assistance in diagnostic tasks, they facilitate the HCPs’ utilization of it. However, the impact of these interpretations on the establishment of perceived trust varies among HCPs, which can lead to an increase in trust for some while decreasing it for others. To validate quantified perceived trust, we employ the degree of agreement metric, which quantitatively assesses whether HCPs lean more towards their own expertise or rely on the model’s recommendations in diagnostic tasks. We found significant alignment between the conclusions of the two metrics, indicating successful modeling and quantification of perceived trust. Plus, a moderate to strong positive correlation between the two metrics confirmed this conclusion. This means that FCMs can quantify HCPs’ perceived trust, aligning with their actual diagnostic advice shift after interacting with the model.
Related Topics
- Type
- book-chapter
- Language
- en
- Landing Page
- https://doi.org/10.1007/978-3-032-08327-2_10
- https://link.springer.com/content/pdf/10.1007/978-3-032-08327-2_10.pdf
- OA Status
- hybrid
- References
- 36
- OpenAlex ID
- https://openalex.org/W4415067913
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415067913Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/978-3-032-08327-2_10Digital Object Identifier
- Title
-
Assessing and Quantifying Perceived Trust in Interpretable Clinical Decision SupportWork title
- Type
-
book-chapterOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-11Full publication date if available
- Authors
-
Mohsen Abbaspour Onari, Isel Grau, Chao Zhang, Marco S. Nobile, Yingqian ZhangList of authors in order
- Landing page
-
https://doi.org/10.1007/978-3-032-08327-2_10Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/978-3-032-08327-2_10.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/978-3-032-08327-2_10.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
36Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415067913 |
|---|---|
| doi | https://doi.org/10.1007/978-3-032-08327-2_10 |
| ids.doi | https://doi.org/10.1007/978-3-032-08327-2_10 |
| ids.openalex | https://openalex.org/W4415067913 |
| fwci | 0.0 |
| type | book-chapter |
| title | Assessing and Quantifying Perceived Trust in Interpretable Clinical Decision Support |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 222 |
| biblio.first_page | 202 |
| topics[0].id | https://openalex.org/T12026 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9962000250816345 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Explainable Artificial Intelligence (XAI) |
| topics[1].id | https://openalex.org/T12805 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9904000163078308 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Cognitive Science and Mapping |
| topics[2].id | https://openalex.org/T11303 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9886999726295471 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Bayesian Modeling and Causal Inference |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.1007/978-3-032-08327-2_10 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764900261 |
| locations[0].source.issn | 1865-0929, 1865-0937 |
| locations[0].source.type | book series |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1865-0929 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Communications in computer and information science |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/978-3-032-08327-2_10.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | book-chapter |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Communications in Computer and Information Science |
| locations[0].landing_page_url | https://doi.org/10.1007/978-3-032-08327-2_10 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5008810990 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7596-378X |
| authorships[0].author.display_name | Mohsen Abbaspour Onari |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mohsen Abbaspour Onari |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5079498248 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8035-2887 |
| authorships[1].author.display_name | Isel Grau |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Isel Grau |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5038373188 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9811-1881 |
| authorships[2].author.display_name | Chao Zhang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chao Zhang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5043650939 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7692-7203 |
| authorships[3].author.display_name | Marco S. Nobile |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Marco S. Nobile |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5077147157 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5073-0787 |
| authorships[4].author.display_name | Yingqian Zhang |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yingqian Zhang |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/978-3-032-08327-2_10.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-11T00:00:00 |
| display_name | Assessing and Quantifying Perceived Trust in Interpretable Clinical Decision Support |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12026 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9962000250816345 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Explainable Artificial Intelligence (XAI) |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1007/978-3-032-08327-2_10 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764900261 |
| best_oa_location.source.issn | 1865-0929, 1865-0937 |
| best_oa_location.source.type | book series |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1865-0929 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Communications in computer and information science |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/978-3-032-08327-2_10.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | book-chapter |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Communications in Computer and Information Science |
| best_oa_location.landing_page_url | https://doi.org/10.1007/978-3-032-08327-2_10 |
| primary_location.id | doi:10.1007/978-3-032-08327-2_10 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764900261 |
| primary_location.source.issn | 1865-0929, 1865-0937 |
| primary_location.source.type | book series |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1865-0929 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Communications in computer and information science |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/978-3-032-08327-2_10.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | book-chapter |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Communications in Computer and Information Science |
| primary_location.landing_page_url | https://doi.org/10.1007/978-3-032-08327-2_10 |
| publication_date | 2025-10-11 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4324152529, https://openalex.org/W2614701572, https://openalex.org/W3163443091, https://openalex.org/W1967274766, https://openalex.org/W4390879320, https://openalex.org/W2135363691, https://openalex.org/W1670263352, https://openalex.org/W4200295368, https://openalex.org/W4319321305, https://openalex.org/W3189365070, https://openalex.org/W2013587512, https://openalex.org/W3134111219, https://openalex.org/W4283800998, https://openalex.org/W4399268203, https://openalex.org/W2095224843, https://openalex.org/W3005073185, https://openalex.org/W4385216343, https://openalex.org/W4380366109, https://openalex.org/W2901627118, https://openalex.org/W2041000279, https://openalex.org/W4321786089, https://openalex.org/W4293518960, https://openalex.org/W3047045886, https://openalex.org/W2098983012, https://openalex.org/W2010871295, https://openalex.org/W4394883940, https://openalex.org/W2282821441, https://openalex.org/W4366547677, https://openalex.org/W4225095662, https://openalex.org/W4280572991, https://openalex.org/W3207598588, https://openalex.org/W3156106752, https://openalex.org/W4312085331, https://openalex.org/W3009578469, https://openalex.org/W2999637955, https://openalex.org/W3103751997 |
| referenced_works_count | 36 |
| abstract_inverted_index.a | 30, 45, 212 |
| abstract_inverted_index.AI | 38 |
| abstract_inverted_index.To | 160 |
| abstract_inverted_index.We | 43, 192 |
| abstract_inverted_index.an | 56, 149 |
| abstract_inverted_index.as | 63 |
| abstract_inverted_index.in | 14, 37, 55, 90, 120, 151, 189 |
| abstract_inverted_index.is | 27, 40 |
| abstract_inverted_index.it | 157 |
| abstract_inverted_index.of | 8, 24, 128, 133, 139, 169, 199, 208 |
| abstract_inverted_index.on | 100, 136, 185 |
| abstract_inverted_index.or | 183 |
| abstract_inverted_index.to | 34, 48, 78, 148, 214 |
| abstract_inverted_index.we | 165 |
| abstract_inverted_index.Our | 71, 93 |
| abstract_inverted_index.and | 2, 29, 50, 80, 206 |
| abstract_inverted_index.can | 146, 229 |
| abstract_inverted_index.for | 67, 86, 153, 158 |
| abstract_inverted_index.it. | 129 |
| abstract_inverted_index.our | 22 |
| abstract_inverted_index.own | 102, 181 |
| abstract_inverted_index.the | 6, 107, 114, 125, 131, 137, 167, 186, 197, 200, 219, 244 |
| abstract_inverted_index.two | 201, 220 |
| abstract_inverted_index.FCMs | 228 |
| abstract_inverted_index.HCPs | 97, 176 |
| abstract_inverted_index.This | 225 |
| abstract_inverted_index.Yet, | 21 |
| abstract_inverted_index.lead | 147 |
| abstract_inverted_index.lean | 177 |
| abstract_inverted_index.maps | 76 |
| abstract_inverted_index.more | 178 |
| abstract_inverted_index.rely | 98, 184 |
| abstract_inverted_index.some | 154 |
| abstract_inverted_index.that | 61, 96, 227 |
| abstract_inverted_index.they | 123 |
| abstract_inverted_index.this | 223 |
| abstract_inverted_index.when | 104 |
| abstract_inverted_index.with | 106, 235, 243 |
| abstract_inverted_index.HCPs, | 144 |
| abstract_inverted_index.Plus, | 211 |
| abstract_inverted_index.after | 241 |
| abstract_inverted_index.among | 10, 143 |
| abstract_inverted_index.found | 193 |
| abstract_inverted_index.fuzzy | 74 |
| abstract_inverted_index.means | 226 |
| abstract_inverted_index.model | 60 |
| abstract_inverted_index.novel | 46 |
| abstract_inverted_index.offer | 117 |
| abstract_inverted_index.shift | 240 |
| abstract_inverted_index.still | 41 |
| abstract_inverted_index.study | 94 |
| abstract_inverted_index.their | 101, 180, 236 |
| abstract_inverted_index.these | 134 |
| abstract_inverted_index.trust | 9, 25, 36, 54, 83, 88, 141, 152 |
| abstract_inverted_index.which | 145, 172 |
| abstract_inverted_index.while | 155 |
| abstract_inverted_index.(FCMs) | 77 |
| abstract_inverted_index.(HCPs) | 13 |
| abstract_inverted_index.actual | 237 |
| abstract_inverted_index.advice | 239 |
| abstract_inverted_index.assess | 49 |
| abstract_inverted_index.cases. | 70 |
| abstract_inverted_index.degree | 168 |
| abstract_inverted_index.elicit | 79 |
| abstract_inverted_index.employ | 166 |
| abstract_inverted_index.impact | 132 |
| abstract_inverted_index.impede | 5 |
| abstract_inverted_index.mental | 84 |
| abstract_inverted_index.model. | 245 |
| abstract_inverted_index.models | 26, 39, 85 |
| abstract_inverted_index.serves | 62 |
| abstract_inverted_index.strong | 215 |
| abstract_inverted_index.tasks, | 122 |
| abstract_inverted_index.tasks. | 191 |
| abstract_inverted_index.trust, | 164, 233 |
| abstract_inverted_index.trust. | 210 |
| abstract_inverted_index.varies | 142 |
| abstract_inverted_index.HCPs’ | 52, 82, 126, 231 |
| abstract_inverted_index.between | 196, 218 |
| abstract_inverted_index.ethical | 3 |
| abstract_inverted_index.limited | 118 |
| abstract_inverted_index.machine | 58 |
| abstract_inverted_index.metric, | 171 |
| abstract_inverted_index.metrics | 221 |
| abstract_inverted_index.others. | 159 |
| abstract_inverted_index.reveals | 95 |
| abstract_inverted_index.support | 66 |
| abstract_inverted_index.towards | 179 |
| abstract_inverted_index.whether | 175 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Although | 113 |
| abstract_inverted_index.COVID-19 | 69 |
| abstract_inverted_index.However, | 130 |
| abstract_inverted_index.accepted | 32 |
| abstract_inverted_index.aligning | 234 |
| abstract_inverted_index.approach | 33, 72 |
| abstract_inverted_index.assesses | 174 |
| abstract_inverted_index.clinical | 64, 91, 110 |
| abstract_inverted_index.concerns | 4 |
| abstract_inverted_index.decision | 19, 65, 111 |
| abstract_inverted_index.dynamics | 89 |
| abstract_inverted_index.increase | 150 |
| abstract_inverted_index.lacking. | 42 |
| abstract_inverted_index.learning | 59 |
| abstract_inverted_index.metrics, | 202 |
| abstract_inverted_index.modeling | 205 |
| abstract_inverted_index.moderate | 213 |
| abstract_inverted_index.positive | 216 |
| abstract_inverted_index.quantify | 51, 81, 230 |
| abstract_inverted_index.standard | 31 |
| abstract_inverted_index.support. | 20, 112 |
| abstract_inverted_index.validate | 161 |
| abstract_inverted_index.Technical | 1 |
| abstract_inverted_index.agreement | 170 |
| abstract_inverted_index.alignment | 195 |
| abstract_inverted_index.cognitive | 75 |
| abstract_inverted_index.confirmed | 222 |
| abstract_inverted_index.developed | 108 |
| abstract_inverted_index.expertise | 103, 182 |
| abstract_inverted_index.introduce | 44 |
| abstract_inverted_index.leverages | 73 |
| abstract_inverted_index.model’s | 115, 187 |
| abstract_inverted_index.perceived | 53, 140, 163, 209, 232 |
| abstract_inverted_index.(AI)-based | 18 |
| abstract_inverted_index.artificial | 16 |
| abstract_inverted_index.assistance | 119 |
| abstract_inverted_index.decreasing | 156 |
| abstract_inverted_index.developing | 15 |
| abstract_inverted_index.diagnosing | 68 |
| abstract_inverted_index.diagnosis. | 92 |
| abstract_inverted_index.diagnostic | 121, 190, 238 |
| abstract_inverted_index.evaluating | 35 |
| abstract_inverted_index.facilitate | 124 |
| abstract_inverted_index.healthcare | 11 |
| abstract_inverted_index.indicating | 203 |
| abstract_inverted_index.quantified | 162 |
| abstract_inverted_index.successful | 204 |
| abstract_inverted_index.conclusion. | 224 |
| abstract_inverted_index.conclusions | 198 |
| abstract_inverted_index.correlation | 217 |
| abstract_inverted_index.interacting | 105, 242 |
| abstract_inverted_index.methodology | 47 |
| abstract_inverted_index.significant | 194 |
| abstract_inverted_index.utilization | 127 |
| abstract_inverted_index.constrained, | 28 |
| abstract_inverted_index.intelligence | 17 |
| abstract_inverted_index.establishment | 7, 138 |
| abstract_inverted_index.interpretable | 57, 109 |
| abstract_inverted_index.predominantly | 99 |
| abstract_inverted_index.professionals | 12 |
| abstract_inverted_index.understanding | 23, 87 |
| abstract_inverted_index.quantification | 207 |
| abstract_inverted_index.quantitatively | 173 |
| abstract_inverted_index.interpretations | 116, 135 |
| abstract_inverted_index.recommendations | 188 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.57401542 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |