ASSESSING IMPACTS OF CLIMATE CHANGE ON TEAK AND SAL LANDSCAPE USING MODIS TIME SERIES DATA Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.5194/isprs-archives-xlii-5-305-2018
Climate change poses a severe threat to the forest ecosystems by impacting its productivity, species composition and forest biodiversity at global and regional level. The scientific community all over the world is using remote sensing techniques to monitor and assess the impact of climate change on forest ecosystems. The consistent time series data provided by MODIS is immensely used for developing a different type of Vegetation indices like NDVI (Normalized difference vegetation indices) products at different spatial and temporal resolution. These vegetation indices have significant potential to detect forest growth and health, vegetation seasonality and different phenological events like budding and flowering. The current study aims to understand the impact of climate change on Teak and Sal forest of STR (Satpura tiger reserve) in central India by using Landsat and MODIS time series data. The rationale for taking STR as study site was to attribute the changes exclusively to climate change as there is no anthropogenic disturbance in STR. A change detection analysis was carried out to detect changes between the period 2017 and 1990 using Landsat data of October month. To understand the inter-annual and seasonal variation of Teak and Sal forests, freely available MOD13Q1 product (250 m, 16 days’ interval) was used to extract NDVI values for each month and four seasons (DJF, JJAS, ON, MAM) for the period 2000 to 2015. The climatic data (rainfall and temperature) was sourced from IMD (India Meteorological Department) at different resolutions (1, 0.5 and 0.25 degree) for the given period of the study. A correlation analysis was done to establish a causal relationship between climate variable (temperature and rainfall) and vegetation health (NDVI) on a different temporal scale of annual, seasonal and month. The study found an increasing trend in annual mean temperature and no consistent trend in total annual rainfall over the period 2000 to 2015. The maximum percentage change was observed in minimum temperature over the period 2000 to 2015. The average annual NDVI of Teak and Sal forests showed an increasing trend however, no trend was observed in seasonal and monthly NDVI over the same period. The maximum and minimum NDVI was found in the post-monsoon months (ON) and summer months (MAM) respectively. As STR is a Teak and Sal dominated landscape, the findings of the current study can also be applied in developing silvicultural and adaptation strategies for other Teak and Sal dominated landscapes of central India.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5194/isprs-archives-xlii-5-305-2018
- https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-5/305/2018/isprs-archives-XLII-5-305-2018.pdf
- OA Status
- diamond
- Cited By
- 4
- References
- 27
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2901824297
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2901824297Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5194/isprs-archives-xlii-5-305-2018Digital Object Identifier
- Title
-
ASSESSING IMPACTS OF CLIMATE CHANGE ON TEAK AND SAL LANDSCAPE USING MODIS TIME SERIES DATAWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-11-19Full publication date if available
- Authors
-
Maneesh Kumar Patasaraiya, Bhaskar Sinha, Jigyasa Bisaria, S. Saran, Rajeev Kumar JaiswalList of authors in order
- Landing page
-
https://doi.org/10.5194/isprs-archives-xlii-5-305-2018Publisher landing page
- PDF URL
-
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-5/305/2018/isprs-archives-XLII-5-305-2018.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-5/305/2018/isprs-archives-XLII-5-305-2018.pdfDirect OA link when available
- Concepts
-
Normalized Difference Vegetation Index, Climate change, Environmental science, Vegetation (pathology), Ecosystem, Phenology, Seasonality, Physical geography, Biodiversity, Forest ecology, Climatology, Geography, Ecology, Medicine, Pathology, Geology, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 2, 2021: 1, 2020: 1Per-year citation counts (last 5 years)
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2901824297 |
|---|---|
| doi | https://doi.org/10.5194/isprs-archives-xlii-5-305-2018 |
| ids.doi | https://doi.org/10.5194/isprs-archives-xlii-5-305-2018 |
| ids.mag | 2901824297 |
| ids.openalex | https://openalex.org/W2901824297 |
| fwci | 0.3586998 |
| type | article |
| title | ASSESSING IMPACTS OF CLIMATE CHANGE ON TEAK AND SAL LANDSCAPE USING MODIS TIME SERIES DATA |
| biblio.issue | |
| biblio.volume | XLII-5 |
| biblio.last_page | 313 |
| biblio.first_page | 305 |
| topics[0].id | https://openalex.org/T10111 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2303 |
| topics[0].subfield.display_name | Ecology |
| topics[0].display_name | Remote Sensing in Agriculture |
| topics[1].id | https://openalex.org/T10895 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.996399998664856 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2302 |
| topics[1].subfield.display_name | Ecological Modeling |
| topics[1].display_name | Species Distribution and Climate Change |
| topics[2].id | https://openalex.org/T10266 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9807000160217285 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2306 |
| topics[2].subfield.display_name | Global and Planetary Change |
| topics[2].display_name | Plant Water Relations and Carbon Dynamics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C1549246 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6850369572639465 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q718775 |
| concepts[0].display_name | Normalized Difference Vegetation Index |
| concepts[1].id | https://openalex.org/C132651083 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6808773875236511 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7942 |
| concepts[1].display_name | Climate change |
| concepts[2].id | https://openalex.org/C39432304 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6249828934669495 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[2].display_name | Environmental science |
| concepts[3].id | https://openalex.org/C2776133958 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6116649508476257 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7918366 |
| concepts[3].display_name | Vegetation (pathology) |
| concepts[4].id | https://openalex.org/C110872660 |
| concepts[4].level | 2 |
| concepts[4].score | 0.47088155150413513 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q37813 |
| concepts[4].display_name | Ecosystem |
| concepts[5].id | https://openalex.org/C51417038 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4678270220756531 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q272737 |
| concepts[5].display_name | Phenology |
| concepts[6].id | https://openalex.org/C125403950 |
| concepts[6].level | 2 |
| concepts[6].score | 0.46177753806114197 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2111082 |
| concepts[6].display_name | Seasonality |
| concepts[7].id | https://openalex.org/C100970517 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4588518738746643 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q52107 |
| concepts[7].display_name | Physical geography |
| concepts[8].id | https://openalex.org/C130217890 |
| concepts[8].level | 2 |
| concepts[8].score | 0.43638724088668823 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q47041 |
| concepts[8].display_name | Biodiversity |
| concepts[9].id | https://openalex.org/C73935091 |
| concepts[9].level | 3 |
| concepts[9].score | 0.42055544257164 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2249329 |
| concepts[9].display_name | Forest ecology |
| concepts[10].id | https://openalex.org/C49204034 |
| concepts[10].level | 1 |
| concepts[10].score | 0.41558197140693665 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q52139 |
| concepts[10].display_name | Climatology |
| concepts[11].id | https://openalex.org/C205649164 |
| concepts[11].level | 0 |
| concepts[11].score | 0.3771875202655792 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[11].display_name | Geography |
| concepts[12].id | https://openalex.org/C18903297 |
| concepts[12].level | 1 |
| concepts[12].score | 0.20972296595573425 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[12].display_name | Ecology |
| concepts[13].id | https://openalex.org/C71924100 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[13].display_name | Medicine |
| concepts[14].id | https://openalex.org/C142724271 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[14].display_name | Pathology |
| concepts[15].id | https://openalex.org/C127313418 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[15].display_name | Geology |
| concepts[16].id | https://openalex.org/C86803240 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[16].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/normalized-difference-vegetation-index |
| keywords[0].score | 0.6850369572639465 |
| keywords[0].display_name | Normalized Difference Vegetation Index |
| keywords[1].id | https://openalex.org/keywords/climate-change |
| keywords[1].score | 0.6808773875236511 |
| keywords[1].display_name | Climate change |
| keywords[2].id | https://openalex.org/keywords/environmental-science |
| keywords[2].score | 0.6249828934669495 |
| keywords[2].display_name | Environmental science |
| keywords[3].id | https://openalex.org/keywords/vegetation |
| keywords[3].score | 0.6116649508476257 |
| keywords[3].display_name | Vegetation (pathology) |
| keywords[4].id | https://openalex.org/keywords/ecosystem |
| keywords[4].score | 0.47088155150413513 |
| keywords[4].display_name | Ecosystem |
| keywords[5].id | https://openalex.org/keywords/phenology |
| keywords[5].score | 0.4678270220756531 |
| keywords[5].display_name | Phenology |
| keywords[6].id | https://openalex.org/keywords/seasonality |
| keywords[6].score | 0.46177753806114197 |
| keywords[6].display_name | Seasonality |
| keywords[7].id | https://openalex.org/keywords/physical-geography |
| keywords[7].score | 0.4588518738746643 |
| keywords[7].display_name | Physical geography |
| keywords[8].id | https://openalex.org/keywords/biodiversity |
| keywords[8].score | 0.43638724088668823 |
| keywords[8].display_name | Biodiversity |
| keywords[9].id | https://openalex.org/keywords/forest-ecology |
| keywords[9].score | 0.42055544257164 |
| keywords[9].display_name | Forest ecology |
| keywords[10].id | https://openalex.org/keywords/climatology |
| keywords[10].score | 0.41558197140693665 |
| keywords[10].display_name | Climatology |
| keywords[11].id | https://openalex.org/keywords/geography |
| keywords[11].score | 0.3771875202655792 |
| keywords[11].display_name | Geography |
| keywords[12].id | https://openalex.org/keywords/ecology |
| keywords[12].score | 0.20972296595573425 |
| keywords[12].display_name | Ecology |
| language | en |
| locations[0].id | doi:10.5194/isprs-archives-xlii-5-305-2018 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2737215817 |
| locations[0].source.issn | 1682-1750, 1682-1777, 2194-9034 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1682-1750 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences |
| locations[0].source.host_organization | https://openalex.org/P4310313756 |
| locations[0].source.host_organization_name | Copernicus Publications |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310313756 |
| locations[0].source.host_organization_lineage_names | Copernicus Publications |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-5/305/2018/isprs-archives-XLII-5-305-2018.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| locations[0].landing_page_url | https://doi.org/10.5194/isprs-archives-xlii-5-305-2018 |
| locations[1].id | pmh:oai:doaj.org/article:010b04572e1b4ac386d0a5a4e8438f98 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol XLII-5, Pp 305-313 (2018) |
| locations[1].landing_page_url | https://doaj.org/article/010b04572e1b4ac386d0a5a4e8438f98 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5003254673 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0641-981X |
| authorships[0].author.display_name | Maneesh Kumar Patasaraiya |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I176010741 |
| authorships[0].affiliations[0].raw_affiliation_string | Indian Institute of Forest Management, Bhopal, India |
| authorships[0].institutions[0].id | https://openalex.org/I176010741 |
| authorships[0].institutions[0].ror | https://ror.org/00jet1p36 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I176010741 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Indian Institute of Forest Management |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | M. K. Patasaraiya |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Indian Institute of Forest Management, Bhopal, India |
| authorships[1].author.id | https://openalex.org/A5044047452 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2083-7540 |
| authorships[1].author.display_name | Bhaskar Sinha |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I176010741, https://openalex.org/I4210140720 |
| authorships[1].affiliations[0].raw_affiliation_string | Indian Institute of Forest Management, Bhopal & School of Ecology and Environment Studies, Nalanda University, Rajgir, Bihar, India |
| authorships[1].institutions[0].id | https://openalex.org/I176010741 |
| authorships[1].institutions[0].ror | https://ror.org/00jet1p36 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I176010741 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Indian Institute of Forest Management |
| authorships[1].institutions[1].id | https://openalex.org/I4210140720 |
| authorships[1].institutions[1].ror | https://ror.org/0403tv949 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210140720 |
| authorships[1].institutions[1].country_code | IN |
| authorships[1].institutions[1].display_name | Nalanda University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | B. Sinha |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Indian Institute of Forest Management, Bhopal & School of Ecology and Environment Studies, Nalanda University, Rajgir, Bihar, India |
| authorships[2].author.id | https://openalex.org/A5010104317 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1667-219X |
| authorships[2].author.display_name | Jigyasa Bisaria |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I176010741 |
| authorships[2].affiliations[0].raw_affiliation_string | Indian Institute of Forest Management, Bhopal, India |
| authorships[2].institutions[0].id | https://openalex.org/I176010741 |
| authorships[2].institutions[0].ror | https://ror.org/00jet1p36 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I176010741 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Indian Institute of Forest Management |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | J. Bisaria |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Indian Institute of Forest Management, Bhopal, India |
| authorships[3].author.id | https://openalex.org/A5114096815 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | S. Saran |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I51281103 |
| authorships[3].affiliations[0].raw_affiliation_string | Indian Institute of Remote Sensing, Dehradun, India |
| authorships[3].institutions[0].id | https://openalex.org/I51281103 |
| authorships[3].institutions[0].ror | https://ror.org/04a39s417 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I1289461252, https://openalex.org/I3148377317, https://openalex.org/I51281103 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Indian Institute of Remote Sensing |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | S. Saran |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Indian Institute of Remote Sensing, Dehradun, India |
| authorships[4].author.id | https://openalex.org/A5091568068 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Rajeev Kumar Jaiswal |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1289461252 |
| authorships[4].affiliations[0].raw_affiliation_string | Indian Space research Organisation, Bangalore, India |
| authorships[4].institutions[0].id | https://openalex.org/I1289461252 |
| authorships[4].institutions[0].ror | https://ror.org/00cwrns71 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I1289461252, https://openalex.org/I3148377317 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | Indian Space Research Organisation |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | R. K. Jaiswal |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Indian Space research Organisation, Bangalore, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-5/305/2018/isprs-archives-XLII-5-305-2018.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | ASSESSING IMPACTS OF CLIMATE CHANGE ON TEAK AND SAL LANDSCAPE USING MODIS TIME SERIES DATA |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10111 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2303 |
| primary_topic.subfield.display_name | Ecology |
| primary_topic.display_name | Remote Sensing in Agriculture |
| related_works | https://openalex.org/W3207046288, https://openalex.org/W3023446922, https://openalex.org/W4324030030, https://openalex.org/W4385533602, https://openalex.org/W2373524250, https://openalex.org/W4206027277, https://openalex.org/W3189212133, https://openalex.org/W4382239404, https://openalex.org/W2388003193, https://openalex.org/W98060521 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.5194/isprs-archives-xlii-5-305-2018 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2737215817 |
| best_oa_location.source.issn | 1682-1750, 1682-1777, 2194-9034 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1682-1750 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310313756 |
| best_oa_location.source.host_organization_name | Copernicus Publications |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310313756 |
| best_oa_location.source.host_organization_lineage_names | Copernicus Publications |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-5/305/2018/isprs-archives-XLII-5-305-2018.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.5194/isprs-archives-xlii-5-305-2018 |
| primary_location.id | doi:10.5194/isprs-archives-xlii-5-305-2018 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2737215817 |
| primary_location.source.issn | 1682-1750, 1682-1777, 2194-9034 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1682-1750 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences |
| primary_location.source.host_organization | https://openalex.org/P4310313756 |
| primary_location.source.host_organization_name | Copernicus Publications |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310313756 |
| primary_location.source.host_organization_lineage_names | Copernicus Publications |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-5/305/2018/isprs-archives-XLII-5-305-2018.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| primary_location.landing_page_url | https://doi.org/10.5194/isprs-archives-xlii-5-305-2018 |
| publication_date | 2018-11-19 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W1996580787, https://openalex.org/W2077870893, https://openalex.org/W2121059586, https://openalex.org/W2074534971, https://openalex.org/W1494422621, https://openalex.org/W2316198041, https://openalex.org/W2374742101, https://openalex.org/W6655566647, https://openalex.org/W1995121449, https://openalex.org/W1588713494, https://openalex.org/W1977142886, https://openalex.org/W1966145846, https://openalex.org/W1993365637, https://openalex.org/W2028585039, https://openalex.org/W2153989276, https://openalex.org/W2788145508, https://openalex.org/W2285619672, https://openalex.org/W2043062855, https://openalex.org/W1978483399, https://openalex.org/W6678451519, https://openalex.org/W2035359815, https://openalex.org/W2072113769, https://openalex.org/W2359657808, https://openalex.org/W2126416729, https://openalex.org/W2093491630, https://openalex.org/W2021057500, https://openalex.org/W2312707058 |
| referenced_works_count | 27 |
| abstract_inverted_index.A | 160, 253 |
| abstract_inverted_index.a | 4, 62, 260, 274, 369 |
| abstract_inverted_index.16 | 200 |
| abstract_inverted_index.As | 366 |
| abstract_inverted_index.To | 182 |
| abstract_inverted_index.an | 286, 332 |
| abstract_inverted_index.as | 140, 152 |
| abstract_inverted_index.at | 20, 75, 238 |
| abstract_inverted_index.be | 383 |
| abstract_inverted_index.by | 11, 55, 127 |
| abstract_inverted_index.in | 124, 158, 289, 297, 313, 340, 356, 385 |
| abstract_inverted_index.is | 32, 57, 154, 368 |
| abstract_inverted_index.m, | 199 |
| abstract_inverted_index.no | 155, 294, 336 |
| abstract_inverted_index.of | 43, 65, 111, 119, 179, 189, 250, 278, 326, 377, 398 |
| abstract_inverted_index.on | 46, 114, 273 |
| abstract_inverted_index.to | 7, 37, 87, 107, 144, 149, 167, 205, 223, 258, 305, 320 |
| abstract_inverted_index.(1, | 241 |
| abstract_inverted_index.0.5 | 242 |
| abstract_inverted_index.IMD | 234 |
| abstract_inverted_index.ON, | 217 |
| abstract_inverted_index.STR | 120, 139, 367 |
| abstract_inverted_index.Sal | 117, 192, 329, 372, 395 |
| abstract_inverted_index.The | 25, 49, 103, 135, 225, 283, 307, 322, 349 |
| abstract_inverted_index.all | 28 |
| abstract_inverted_index.and | 17, 22, 39, 78, 91, 95, 101, 116, 130, 174, 186, 191, 212, 229, 243, 267, 269, 281, 293, 328, 342, 351, 361, 371, 388, 394 |
| abstract_inverted_index.can | 381 |
| abstract_inverted_index.for | 60, 137, 209, 219, 246, 391 |
| abstract_inverted_index.its | 13 |
| abstract_inverted_index.out | 166 |
| abstract_inverted_index.the | 8, 30, 41, 109, 146, 171, 184, 220, 247, 251, 302, 317, 346, 357, 375, 378 |
| abstract_inverted_index.was | 143, 164, 203, 231, 256, 311, 338, 354 |
| abstract_inverted_index.(250 | 198 |
| abstract_inverted_index.(ON) | 360 |
| abstract_inverted_index.0.25 | 244 |
| abstract_inverted_index.1990 | 175 |
| abstract_inverted_index.2000 | 222, 304, 319 |
| abstract_inverted_index.2017 | 173 |
| abstract_inverted_index.MAM) | 218 |
| abstract_inverted_index.NDVI | 69, 207, 325, 344, 353 |
| abstract_inverted_index.STR. | 159 |
| abstract_inverted_index.Teak | 115, 190, 327, 370, 393 |
| abstract_inverted_index.aims | 106 |
| abstract_inverted_index.also | 382 |
| abstract_inverted_index.data | 53, 178, 227 |
| abstract_inverted_index.done | 257 |
| abstract_inverted_index.each | 210 |
| abstract_inverted_index.four | 213 |
| abstract_inverted_index.from | 233 |
| abstract_inverted_index.have | 84 |
| abstract_inverted_index.like | 68, 99 |
| abstract_inverted_index.mean | 291 |
| abstract_inverted_index.over | 29, 301, 316, 345 |
| abstract_inverted_index.same | 347 |
| abstract_inverted_index.site | 142 |
| abstract_inverted_index.time | 51, 132 |
| abstract_inverted_index.type | 64 |
| abstract_inverted_index.used | 59, 204 |
| abstract_inverted_index.(DJF, | 215 |
| abstract_inverted_index.(MAM) | 364 |
| abstract_inverted_index.2015. | 224, 306, 321 |
| abstract_inverted_index.India | 126 |
| abstract_inverted_index.JJAS, | 216 |
| abstract_inverted_index.MODIS | 56, 131 |
| abstract_inverted_index.These | 81 |
| abstract_inverted_index.data. | 134 |
| abstract_inverted_index.found | 285, 355 |
| abstract_inverted_index.given | 248 |
| abstract_inverted_index.month | 211 |
| abstract_inverted_index.other | 392 |
| abstract_inverted_index.poses | 3 |
| abstract_inverted_index.scale | 277 |
| abstract_inverted_index.study | 105, 141, 284, 380 |
| abstract_inverted_index.there | 153 |
| abstract_inverted_index.tiger | 122 |
| abstract_inverted_index.total | 298 |
| abstract_inverted_index.trend | 288, 296, 334, 337 |
| abstract_inverted_index.using | 33, 128, 176 |
| abstract_inverted_index.world | 31 |
| abstract_inverted_index.(India | 235 |
| abstract_inverted_index.(NDVI) | 272 |
| abstract_inverted_index.India. | 400 |
| abstract_inverted_index.annual | 290, 299, 324 |
| abstract_inverted_index.assess | 40 |
| abstract_inverted_index.causal | 261 |
| abstract_inverted_index.change | 2, 45, 113, 151, 161, 310 |
| abstract_inverted_index.detect | 88, 168 |
| abstract_inverted_index.events | 98 |
| abstract_inverted_index.forest | 9, 18, 47, 89, 118 |
| abstract_inverted_index.freely | 194 |
| abstract_inverted_index.global | 21 |
| abstract_inverted_index.growth | 90 |
| abstract_inverted_index.health | 271 |
| abstract_inverted_index.impact | 42, 110 |
| abstract_inverted_index.level. | 24 |
| abstract_inverted_index.month. | 181, 282 |
| abstract_inverted_index.months | 359, 363 |
| abstract_inverted_index.period | 172, 221, 249, 303, 318 |
| abstract_inverted_index.remote | 34 |
| abstract_inverted_index.series | 52, 133 |
| abstract_inverted_index.severe | 5 |
| abstract_inverted_index.showed | 331 |
| abstract_inverted_index.study. | 252 |
| abstract_inverted_index.summer | 362 |
| abstract_inverted_index.taking | 138 |
| abstract_inverted_index.threat | 6 |
| abstract_inverted_index.values | 208 |
| abstract_inverted_index.Climate | 1 |
| abstract_inverted_index.Landsat | 129, 177 |
| abstract_inverted_index.MOD13Q1 | 196 |
| abstract_inverted_index.October | 180 |
| abstract_inverted_index.annual, | 279 |
| abstract_inverted_index.applied | 384 |
| abstract_inverted_index.average | 323 |
| abstract_inverted_index.between | 170, 263 |
| abstract_inverted_index.budding | 100 |
| abstract_inverted_index.carried | 165 |
| abstract_inverted_index.central | 125, 399 |
| abstract_inverted_index.changes | 147, 169 |
| abstract_inverted_index.climate | 44, 112, 150, 264 |
| abstract_inverted_index.current | 104, 379 |
| abstract_inverted_index.days’ | 201 |
| abstract_inverted_index.degree) | 245 |
| abstract_inverted_index.extract | 206 |
| abstract_inverted_index.forests | 330 |
| abstract_inverted_index.health, | 92 |
| abstract_inverted_index.indices | 67, 83 |
| abstract_inverted_index.maximum | 308, 350 |
| abstract_inverted_index.minimum | 314, 352 |
| abstract_inverted_index.monitor | 38 |
| abstract_inverted_index.monthly | 343 |
| abstract_inverted_index.period. | 348 |
| abstract_inverted_index.product | 197 |
| abstract_inverted_index.seasons | 214 |
| abstract_inverted_index.sensing | 35 |
| abstract_inverted_index.sourced | 232 |
| abstract_inverted_index.spatial | 77 |
| abstract_inverted_index.species | 15 |
| abstract_inverted_index.(Satpura | 121 |
| abstract_inverted_index.analysis | 163, 255 |
| abstract_inverted_index.climatic | 226 |
| abstract_inverted_index.findings | 376 |
| abstract_inverted_index.forests, | 193 |
| abstract_inverted_index.however, | 335 |
| abstract_inverted_index.indices) | 73 |
| abstract_inverted_index.observed | 312, 339 |
| abstract_inverted_index.products | 74 |
| abstract_inverted_index.provided | 54 |
| abstract_inverted_index.rainfall | 300 |
| abstract_inverted_index.regional | 23 |
| abstract_inverted_index.reserve) | 123 |
| abstract_inverted_index.seasonal | 187, 280, 341 |
| abstract_inverted_index.temporal | 79, 276 |
| abstract_inverted_index.variable | 265 |
| abstract_inverted_index.(rainfall | 228 |
| abstract_inverted_index.Abstract. | 0 |
| abstract_inverted_index.attribute | 145 |
| abstract_inverted_index.available | 195 |
| abstract_inverted_index.community | 27 |
| abstract_inverted_index.detection | 162 |
| abstract_inverted_index.different | 63, 76, 96, 239, 275 |
| abstract_inverted_index.dominated | 373, 396 |
| abstract_inverted_index.establish | 259 |
| abstract_inverted_index.immensely | 58 |
| abstract_inverted_index.impacting | 12 |
| abstract_inverted_index.interval) | 202 |
| abstract_inverted_index.potential | 86 |
| abstract_inverted_index.rainfall) | 268 |
| abstract_inverted_index.rationale | 136 |
| abstract_inverted_index.variation | 188 |
| abstract_inverted_index.Vegetation | 66 |
| abstract_inverted_index.adaptation | 389 |
| abstract_inverted_index.consistent | 50, 295 |
| abstract_inverted_index.developing | 61, 386 |
| abstract_inverted_index.difference | 71 |
| abstract_inverted_index.ecosystems | 10 |
| abstract_inverted_index.flowering. | 102 |
| abstract_inverted_index.increasing | 287, 333 |
| abstract_inverted_index.landscape, | 374 |
| abstract_inverted_index.landscapes | 397 |
| abstract_inverted_index.percentage | 309 |
| abstract_inverted_index.scientific | 26 |
| abstract_inverted_index.strategies | 390 |
| abstract_inverted_index.techniques | 36 |
| abstract_inverted_index.understand | 108, 183 |
| abstract_inverted_index.vegetation | 72, 82, 93, 270 |
| abstract_inverted_index.(Normalized | 70 |
| abstract_inverted_index.Department) | 237 |
| abstract_inverted_index.composition | 16 |
| abstract_inverted_index.correlation | 254 |
| abstract_inverted_index.disturbance | 157 |
| abstract_inverted_index.ecosystems. | 48 |
| abstract_inverted_index.exclusively | 148 |
| abstract_inverted_index.resolution. | 80 |
| abstract_inverted_index.resolutions | 240 |
| abstract_inverted_index.seasonality | 94 |
| abstract_inverted_index.significant | 85 |
| abstract_inverted_index.temperature | 292, 315 |
| abstract_inverted_index.(temperature | 266 |
| abstract_inverted_index.biodiversity | 19 |
| abstract_inverted_index.inter-annual | 185 |
| abstract_inverted_index.phenological | 97 |
| abstract_inverted_index.post-monsoon | 358 |
| abstract_inverted_index.relationship | 262 |
| abstract_inverted_index.temperature) | 230 |
| abstract_inverted_index.anthropogenic | 156 |
| abstract_inverted_index.productivity, | 14 |
| abstract_inverted_index.respectively. | 365 |
| abstract_inverted_index.silvicultural | 387 |
| abstract_inverted_index.Meteorological | 236 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.6600000262260437 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.67681603 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |