Assessing LLM Reasoning Steps via Principal Knowledge Grounding Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2511.00879
Step-by-step reasoning has become a standard approach for large language models (LLMs) to tackle complex tasks. While this paradigm has proven effective, it raises a fundamental question: How can we verify that an LLM's reasoning is accurately grounded in knowledge? To address this question, we introduce a novel evaluation suite that systematically assesses the knowledge grounding of intermediate reasoning. Our framework comprises three key components. (1) Principal Knowledge Collection, a large-scale repository of atomic knowledge essential for reasoning. Based on the collection, we propose (2) knowledge-grounded evaluation metrics designed to measure how well models recall and apply prerequisite knowledge in reasoning. These metrics are computed by our (3) evaluator LLM, a lightweight model optimized for cost-effective and reliable metric computation. Our evaluation suite demonstrates remarkable effectiveness in identifying missing or misapplied knowledge elements, providing crucial insights for uncovering fundamental reasoning deficiencies in LLMs. Beyond evaluation, we demonstrate how these metrics can be integrated into preference optimization, showcasing further applications of knowledge-grounded evaluation.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2511.00879
- https://arxiv.org/pdf/2511.00879
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416432514
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416432514Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2511.00879Digital Object Identifier
- Title
-
Assessing LLM Reasoning Steps via Principal Knowledge GroundingWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-02Full publication date if available
- Authors
-
Hyeon Seok Hwang, Y Cho, Chanwoong Yoon, Yein Park, Michael Song, Gangwoo KimList of authors in order
- Landing page
-
https://arxiv.org/abs/2511.00879Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2511.00879Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2511.00879Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416432514 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2511.00879 |
| ids.doi | https://doi.org/10.48550/arxiv.2511.00879 |
| ids.openalex | https://openalex.org/W4416432514 |
| fwci | |
| type | preprint |
| title | Assessing LLM Reasoning Steps via Principal Knowledge Grounding |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2511.00879 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2511.00879 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2511.00879 |
| locations[1].id | doi:10.48550/arxiv.2511.00879 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2511.00879 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5086631559 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6356-4933 |
| authorships[0].author.display_name | Hyeon Seok Hwang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hwang, Hyeon |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5086971212 |
| authorships[1].author.orcid | https://orcid.org/0009-0005-4792-5152 |
| authorships[1].author.display_name | Y Cho |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Cho, Yewon |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5040864261 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Chanwoong Yoon |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yoon, Chanwoong |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5086305138 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Yein Park |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Park, Yein |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5076209481 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8829-9961 |
| authorships[4].author.display_name | Michael Song |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Song, Minju |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5003586715 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Gangwoo Kim |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Kim, Gangwoo |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2511.00879 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-06T00:00:00 |
| display_name | Assessing LLM Reasoning Steps via Principal Knowledge Grounding |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T13:59:13.298180 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2511.00879 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2511.00879 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2511.00879 |
| primary_location.id | pmh:oai:arXiv.org:2511.00879 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2511.00879 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2511.00879 |
| publication_date | 2025-11-02 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 4, 24, 46, 69, 110 |
| abstract_inverted_index.To | 40 |
| abstract_inverted_index.an | 32 |
| abstract_inverted_index.be | 151 |
| abstract_inverted_index.by | 105 |
| abstract_inverted_index.in | 38, 99, 126, 141 |
| abstract_inverted_index.is | 35 |
| abstract_inverted_index.it | 22 |
| abstract_inverted_index.of | 56, 72, 159 |
| abstract_inverted_index.on | 79 |
| abstract_inverted_index.or | 129 |
| abstract_inverted_index.to | 12, 89 |
| abstract_inverted_index.we | 29, 44, 82, 145 |
| abstract_inverted_index.(1) | 65 |
| abstract_inverted_index.(2) | 84 |
| abstract_inverted_index.(3) | 107 |
| abstract_inverted_index.How | 27 |
| abstract_inverted_index.Our | 59, 120 |
| abstract_inverted_index.and | 95, 116 |
| abstract_inverted_index.are | 103 |
| abstract_inverted_index.can | 28, 150 |
| abstract_inverted_index.for | 7, 76, 114, 136 |
| abstract_inverted_index.has | 2, 19 |
| abstract_inverted_index.how | 91, 147 |
| abstract_inverted_index.key | 63 |
| abstract_inverted_index.our | 106 |
| abstract_inverted_index.the | 53, 80 |
| abstract_inverted_index.LLM, | 109 |
| abstract_inverted_index.into | 153 |
| abstract_inverted_index.that | 31, 50 |
| abstract_inverted_index.this | 17, 42 |
| abstract_inverted_index.well | 92 |
| abstract_inverted_index.Based | 78 |
| abstract_inverted_index.LLM's | 33 |
| abstract_inverted_index.LLMs. | 142 |
| abstract_inverted_index.These | 101 |
| abstract_inverted_index.While | 16 |
| abstract_inverted_index.apply | 96 |
| abstract_inverted_index.large | 8 |
| abstract_inverted_index.model | 112 |
| abstract_inverted_index.novel | 47 |
| abstract_inverted_index.suite | 49, 122 |
| abstract_inverted_index.these | 148 |
| abstract_inverted_index.three | 62 |
| abstract_inverted_index.(LLMs) | 11 |
| abstract_inverted_index.Beyond | 143 |
| abstract_inverted_index.atomic | 73 |
| abstract_inverted_index.become | 3 |
| abstract_inverted_index.metric | 118 |
| abstract_inverted_index.models | 10, 93 |
| abstract_inverted_index.proven | 20 |
| abstract_inverted_index.raises | 23 |
| abstract_inverted_index.recall | 94 |
| abstract_inverted_index.tackle | 13 |
| abstract_inverted_index.tasks. | 15 |
| abstract_inverted_index.verify | 30 |
| abstract_inverted_index.address | 41 |
| abstract_inverted_index.complex | 14 |
| abstract_inverted_index.crucial | 134 |
| abstract_inverted_index.further | 157 |
| abstract_inverted_index.measure | 90 |
| abstract_inverted_index.metrics | 87, 102, 149 |
| abstract_inverted_index.missing | 128 |
| abstract_inverted_index.propose | 83 |
| abstract_inverted_index.approach | 6 |
| abstract_inverted_index.assesses | 52 |
| abstract_inverted_index.computed | 104 |
| abstract_inverted_index.designed | 88 |
| abstract_inverted_index.grounded | 37 |
| abstract_inverted_index.insights | 135 |
| abstract_inverted_index.language | 9 |
| abstract_inverted_index.paradigm | 18 |
| abstract_inverted_index.reliable | 117 |
| abstract_inverted_index.standard | 5 |
| abstract_inverted_index.Knowledge | 67 |
| abstract_inverted_index.Principal | 66 |
| abstract_inverted_index.comprises | 61 |
| abstract_inverted_index.elements, | 132 |
| abstract_inverted_index.essential | 75 |
| abstract_inverted_index.evaluator | 108 |
| abstract_inverted_index.framework | 60 |
| abstract_inverted_index.grounding | 55 |
| abstract_inverted_index.introduce | 45 |
| abstract_inverted_index.knowledge | 54, 74, 98, 131 |
| abstract_inverted_index.optimized | 113 |
| abstract_inverted_index.providing | 133 |
| abstract_inverted_index.question, | 43 |
| abstract_inverted_index.question: | 26 |
| abstract_inverted_index.reasoning | 1, 34, 139 |
| abstract_inverted_index.accurately | 36 |
| abstract_inverted_index.effective, | 21 |
| abstract_inverted_index.evaluation | 48, 86, 121 |
| abstract_inverted_index.integrated | 152 |
| abstract_inverted_index.knowledge? | 39 |
| abstract_inverted_index.misapplied | 130 |
| abstract_inverted_index.preference | 154 |
| abstract_inverted_index.reasoning. | 58, 77, 100 |
| abstract_inverted_index.remarkable | 124 |
| abstract_inverted_index.repository | 71 |
| abstract_inverted_index.showcasing | 156 |
| abstract_inverted_index.uncovering | 137 |
| abstract_inverted_index.Collection, | 68 |
| abstract_inverted_index.collection, | 81 |
| abstract_inverted_index.components. | 64 |
| abstract_inverted_index.demonstrate | 146 |
| abstract_inverted_index.evaluation, | 144 |
| abstract_inverted_index.evaluation. | 161 |
| abstract_inverted_index.fundamental | 25, 138 |
| abstract_inverted_index.identifying | 127 |
| abstract_inverted_index.large-scale | 70 |
| abstract_inverted_index.lightweight | 111 |
| abstract_inverted_index.Step-by-step | 0 |
| abstract_inverted_index.applications | 158 |
| abstract_inverted_index.computation. | 119 |
| abstract_inverted_index.deficiencies | 140 |
| abstract_inverted_index.demonstrates | 123 |
| abstract_inverted_index.intermediate | 57 |
| abstract_inverted_index.prerequisite | 97 |
| abstract_inverted_index.effectiveness | 125 |
| abstract_inverted_index.optimization, | 155 |
| abstract_inverted_index.cost-effective | 115 |
| abstract_inverted_index.systematically | 51 |
| abstract_inverted_index.knowledge-grounded | 85, 160 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |