Assessing spatial heterogeneity of active layer thickness over Arctic-foothills tundra through intensive field sampling and multi-source remote sensing Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.5194/egusphere-2025-3236
Active layer thickness (ALT) is an essential climate variable for monitoring permafrost degradation, whose deepening can lead to increased greenhouse gas emissions, altered hydrology and ecology, infrastructure damage, and a positive climate feedback. Quantifying ALT spatial heterogeneity remains challenging due to the influence of localized variations in terrain, microclimate, snow/soil properties, vegetation cover, and surface disturbances. It is also unclear how local ALT patterns (e.g., sub-meter to 10 m) and mechanisms scale up to broader landscape footprints (e.g., 10–1000 m) represented from global satellite observations and Earth system models. We assessed ALT spatial heterogeneity in the Arctic-foothills tundra within the Northern Slope of Alaska through intensive field sampling over four 90 m × 90 m plots, combined with multi-source remote sensing and machine learning (ML). Analysis using field observations and ML revealed that vegetation, surface wetness, subsurface rocks, and micro-topography exert strong influence on 5-m ALT variations, whereas terrain controls dominate (~65 % contribution) at coarser 10-m spatial resolution. By leveraging cm-level optical-infrared drone imagery, we further generated 0.1-m ALT maps over a larger 5 km × 5 km region and examined ALT scaling effects. Our analysis showed a quadratic relationship in scale-dependent uncertainties, characterized by a rapid increase in uncertainties at the sub-meter level (e.g., RMSE normalized by the standard deviation of 0.1 m ALT climbed by ~10 %), followed by another 10 % increase from 1 m to 30 m resolution, and more conservative error increase (~5 %) from 30 m to 1,000 m scale. Our study allows for improved interpretation of remote sensing and process-based ALT simulations for the changing Arctic by clarifying scale-dependent uncertainties and underlying mechanisms.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5194/egusphere-2025-3236
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413226565
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413226565Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5194/egusphere-2025-3236Digital Object Identifier
- Title
-
Assessing spatial heterogeneity of active layer thickness over Arctic-foothills tundra through intensive field sampling and multi-source remote sensingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-11Full publication date if available
- Authors
-
Jinyang Du, K. Arthur Endsley, Kazem Bakian-Dogaheh, John S. Kimball, Mahta Moghaddam, Thomas A. Douglas, Asem Melebari, Sepehr Eskandari, Jinhyuk E. Kim, J. Whitcomb, Yuhuan Zhao, Sophia HenzeList of authors in order
- Landing page
-
https://doi.org/10.5194/egusphere-2025-3236Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5194/egusphere-2025-3236Direct OA link when available
- Concepts
-
Tundra, Permafrost, Environmental science, Terrain, Vegetation (pathology), Spatial heterogeneity, Spatial variability, Arctic, Atmospheric sciences, Physical geography, Remote sensing, Image resolution, Sampling (signal processing), Snow, Spatial ecology, Microclimate, Hydrology (agriculture), Geology, Geomorphology, Ecology, Geography, Cartography, Geotechnical engineering, Biology, Statistics, Pathology, Medicine, Mathematics, Artificial intelligence, Computer vision, Filter (signal processing), Oceanography, Computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413226565 |
|---|---|
| doi | https://doi.org/10.5194/egusphere-2025-3236 |
| ids.doi | https://doi.org/10.5194/egusphere-2025-3236 |
| ids.openalex | https://openalex.org/W4413226565 |
| fwci | 0.0 |
| type | article |
| title | Assessing spatial heterogeneity of active layer thickness over Arctic-foothills tundra through intensive field sampling and multi-source remote sensing |
| awards[0].id | https://openalex.org/G5245771670 |
| awards[0].funder_id | https://openalex.org/F4320333674 |
| awards[0].display_name | |
| awards[0].funder_award_id | 80NSSC22K1238 |
| awards[0].funder_display_name | Earth Sciences Division |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11333 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1902 |
| topics[0].subfield.display_name | Atmospheric Science |
| topics[0].display_name | Climate change and permafrost |
| topics[1].id | https://openalex.org/T10644 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.996399998664856 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1902 |
| topics[1].subfield.display_name | Atmospheric Science |
| topics[1].display_name | Cryospheric studies and observations |
| topics[2].id | https://openalex.org/T12614 |
| topics[2].field.id | https://openalex.org/fields/36 |
| topics[2].field.display_name | Health Professions |
| topics[2].score | 0.9801999926567078 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3600 |
| topics[2].subfield.display_name | General Health Professions |
| topics[2].display_name | Indigenous Studies and Ecology |
| funders[0].id | https://openalex.org/F4320333674 |
| funders[0].ror | |
| funders[0].display_name | Earth Sciences Division |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C125069764 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8202174305915833 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q43262 |
| concepts[0].display_name | Tundra |
| concepts[1].id | https://openalex.org/C15098985 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7076886892318726 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q179918 |
| concepts[1].display_name | Permafrost |
| concepts[2].id | https://openalex.org/C39432304 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6926851868629456 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[2].display_name | Environmental science |
| concepts[3].id | https://openalex.org/C161840515 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6230846047401428 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q186131 |
| concepts[3].display_name | Terrain |
| concepts[4].id | https://openalex.org/C2776133958 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6057573556900024 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7918366 |
| concepts[4].display_name | Vegetation (pathology) |
| concepts[5].id | https://openalex.org/C180478619 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5841507315635681 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7574066 |
| concepts[5].display_name | Spatial heterogeneity |
| concepts[6].id | https://openalex.org/C94747663 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5366954207420349 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7574086 |
| concepts[6].display_name | Spatial variability |
| concepts[7].id | https://openalex.org/C518008717 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5033430457115173 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q25322 |
| concepts[7].display_name | Arctic |
| concepts[8].id | https://openalex.org/C91586092 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4879862666130066 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q757520 |
| concepts[8].display_name | Atmospheric sciences |
| concepts[9].id | https://openalex.org/C100970517 |
| concepts[9].level | 1 |
| concepts[9].score | 0.486887127161026 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q52107 |
| concepts[9].display_name | Physical geography |
| concepts[10].id | https://openalex.org/C62649853 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4842812418937683 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[10].display_name | Remote sensing |
| concepts[11].id | https://openalex.org/C205372480 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4518175423145294 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q210521 |
| concepts[11].display_name | Image resolution |
| concepts[12].id | https://openalex.org/C140779682 |
| concepts[12].level | 3 |
| concepts[12].score | 0.4441251754760742 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q210868 |
| concepts[12].display_name | Sampling (signal processing) |
| concepts[13].id | https://openalex.org/C197046000 |
| concepts[13].level | 2 |
| concepts[13].score | 0.43745899200439453 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7561 |
| concepts[13].display_name | Snow |
| concepts[14].id | https://openalex.org/C158709400 |
| concepts[14].level | 2 |
| concepts[14].score | 0.4274998903274536 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q3578586 |
| concepts[14].display_name | Spatial ecology |
| concepts[15].id | https://openalex.org/C32957820 |
| concepts[15].level | 2 |
| concepts[15].score | 0.4161813259124756 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q215108 |
| concepts[15].display_name | Microclimate |
| concepts[16].id | https://openalex.org/C76886044 |
| concepts[16].level | 2 |
| concepts[16].score | 0.3349056839942932 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2883300 |
| concepts[16].display_name | Hydrology (agriculture) |
| concepts[17].id | https://openalex.org/C127313418 |
| concepts[17].level | 0 |
| concepts[17].score | 0.23652812838554382 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[17].display_name | Geology |
| concepts[18].id | https://openalex.org/C114793014 |
| concepts[18].level | 1 |
| concepts[18].score | 0.18203866481781006 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q52109 |
| concepts[18].display_name | Geomorphology |
| concepts[19].id | https://openalex.org/C18903297 |
| concepts[19].level | 1 |
| concepts[19].score | 0.15347221493721008 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[19].display_name | Ecology |
| concepts[20].id | https://openalex.org/C205649164 |
| concepts[20].level | 0 |
| concepts[20].score | 0.12678271532058716 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[20].display_name | Geography |
| concepts[21].id | https://openalex.org/C58640448 |
| concepts[21].level | 1 |
| concepts[21].score | 0.10279417037963867 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[21].display_name | Cartography |
| concepts[22].id | https://openalex.org/C187320778 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q1349130 |
| concepts[22].display_name | Geotechnical engineering |
| concepts[23].id | https://openalex.org/C86803240 |
| concepts[23].level | 0 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[23].display_name | Biology |
| concepts[24].id | https://openalex.org/C105795698 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[24].display_name | Statistics |
| concepts[25].id | https://openalex.org/C142724271 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[25].display_name | Pathology |
| concepts[26].id | https://openalex.org/C71924100 |
| concepts[26].level | 0 |
| concepts[26].score | 0.0 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[26].display_name | Medicine |
| concepts[27].id | https://openalex.org/C33923547 |
| concepts[27].level | 0 |
| concepts[27].score | 0.0 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[27].display_name | Mathematics |
| concepts[28].id | https://openalex.org/C154945302 |
| concepts[28].level | 1 |
| concepts[28].score | 0.0 |
| concepts[28].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[28].display_name | Artificial intelligence |
| concepts[29].id | https://openalex.org/C31972630 |
| concepts[29].level | 1 |
| concepts[29].score | 0.0 |
| concepts[29].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[29].display_name | Computer vision |
| concepts[30].id | https://openalex.org/C106131492 |
| concepts[30].level | 2 |
| concepts[30].score | 0.0 |
| concepts[30].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[30].display_name | Filter (signal processing) |
| concepts[31].id | https://openalex.org/C111368507 |
| concepts[31].level | 1 |
| concepts[31].score | 0.0 |
| concepts[31].wikidata | https://www.wikidata.org/wiki/Q43518 |
| concepts[31].display_name | Oceanography |
| concepts[32].id | https://openalex.org/C41008148 |
| concepts[32].level | 0 |
| concepts[32].score | 0.0 |
| concepts[32].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[32].display_name | Computer science |
| keywords[0].id | https://openalex.org/keywords/tundra |
| keywords[0].score | 0.8202174305915833 |
| keywords[0].display_name | Tundra |
| keywords[1].id | https://openalex.org/keywords/permafrost |
| keywords[1].score | 0.7076886892318726 |
| keywords[1].display_name | Permafrost |
| keywords[2].id | https://openalex.org/keywords/environmental-science |
| keywords[2].score | 0.6926851868629456 |
| keywords[2].display_name | Environmental science |
| keywords[3].id | https://openalex.org/keywords/terrain |
| keywords[3].score | 0.6230846047401428 |
| keywords[3].display_name | Terrain |
| keywords[4].id | https://openalex.org/keywords/vegetation |
| keywords[4].score | 0.6057573556900024 |
| keywords[4].display_name | Vegetation (pathology) |
| keywords[5].id | https://openalex.org/keywords/spatial-heterogeneity |
| keywords[5].score | 0.5841507315635681 |
| keywords[5].display_name | Spatial heterogeneity |
| keywords[6].id | https://openalex.org/keywords/spatial-variability |
| keywords[6].score | 0.5366954207420349 |
| keywords[6].display_name | Spatial variability |
| keywords[7].id | https://openalex.org/keywords/arctic |
| keywords[7].score | 0.5033430457115173 |
| keywords[7].display_name | Arctic |
| keywords[8].id | https://openalex.org/keywords/atmospheric-sciences |
| keywords[8].score | 0.4879862666130066 |
| keywords[8].display_name | Atmospheric sciences |
| keywords[9].id | https://openalex.org/keywords/physical-geography |
| keywords[9].score | 0.486887127161026 |
| keywords[9].display_name | Physical geography |
| keywords[10].id | https://openalex.org/keywords/remote-sensing |
| keywords[10].score | 0.4842812418937683 |
| keywords[10].display_name | Remote sensing |
| keywords[11].id | https://openalex.org/keywords/image-resolution |
| keywords[11].score | 0.4518175423145294 |
| keywords[11].display_name | Image resolution |
| keywords[12].id | https://openalex.org/keywords/sampling |
| keywords[12].score | 0.4441251754760742 |
| keywords[12].display_name | Sampling (signal processing) |
| keywords[13].id | https://openalex.org/keywords/snow |
| keywords[13].score | 0.43745899200439453 |
| keywords[13].display_name | Snow |
| keywords[14].id | https://openalex.org/keywords/spatial-ecology |
| keywords[14].score | 0.4274998903274536 |
| keywords[14].display_name | Spatial ecology |
| keywords[15].id | https://openalex.org/keywords/microclimate |
| keywords[15].score | 0.4161813259124756 |
| keywords[15].display_name | Microclimate |
| keywords[16].id | https://openalex.org/keywords/hydrology |
| keywords[16].score | 0.3349056839942932 |
| keywords[16].display_name | Hydrology (agriculture) |
| keywords[17].id | https://openalex.org/keywords/geology |
| keywords[17].score | 0.23652812838554382 |
| keywords[17].display_name | Geology |
| keywords[18].id | https://openalex.org/keywords/geomorphology |
| keywords[18].score | 0.18203866481781006 |
| keywords[18].display_name | Geomorphology |
| keywords[19].id | https://openalex.org/keywords/ecology |
| keywords[19].score | 0.15347221493721008 |
| keywords[19].display_name | Ecology |
| keywords[20].id | https://openalex.org/keywords/geography |
| keywords[20].score | 0.12678271532058716 |
| keywords[20].display_name | Geography |
| keywords[21].id | https://openalex.org/keywords/cartography |
| keywords[21].score | 0.10279417037963867 |
| keywords[21].display_name | Cartography |
| language | en |
| locations[0].id | doi:10.5194/egusphere-2025-3236 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5194/egusphere-2025-3236 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5018795881 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8698-6696 |
| authorships[0].author.display_name | Jinyang Du |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jinyang Du |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5045576748 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9722-8092 |
| authorships[1].author.display_name | K. Arthur Endsley |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | K. Arthur Endsley |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5001850427 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8897-0105 |
| authorships[2].author.display_name | Kazem Bakian-Dogaheh |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kazem Bakian Dogaheh |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5012801147 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5493-5878 |
| authorships[3].author.display_name | John S. Kimball |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | John Kimball |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5051682678 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5304-2616 |
| authorships[4].author.display_name | Mahta Moghaddam |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Mahta Moghaddam |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5013479321 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-1314-1905 |
| authorships[5].author.display_name | Thomas A. Douglas |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Tom Douglas |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5024136665 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-6040-3977 |
| authorships[6].author.display_name | Asem Melebari |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Asem Melebari |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5040990373 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-2831-6288 |
| authorships[7].author.display_name | Sepehr Eskandari |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Sepehr Eskandari |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5068912603 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-5247-2830 |
| authorships[8].author.display_name | Jinhyuk E. Kim |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Jinhyuk Kim |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5018868159 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-2919-7260 |
| authorships[9].author.display_name | J. Whitcomb |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Jane Whitcomb |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5110997511 |
| authorships[10].author.orcid | https://orcid.org/0000-0003-4190-624X |
| authorships[10].author.display_name | Yuhuan Zhao |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Yuhuan Zhao |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5119311557 |
| authorships[11].author.orcid | |
| authorships[11].author.display_name | Sophia Henze |
| authorships[11].author_position | last |
| authorships[11].raw_author_name | Sophia Henze |
| authorships[11].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5194/egusphere-2025-3236 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Assessing spatial heterogeneity of active layer thickness over Arctic-foothills tundra through intensive field sampling and multi-source remote sensing |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-10T23:14:41.190248 |
| primary_topic.id | https://openalex.org/T11333 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1902 |
| primary_topic.subfield.display_name | Atmospheric Science |
| primary_topic.display_name | Climate change and permafrost |
| related_works | https://openalex.org/W2232614653, https://openalex.org/W2006343822, https://openalex.org/W2093940020, https://openalex.org/W1995645534, https://openalex.org/W2122946510, https://openalex.org/W2059012183, https://openalex.org/W2365997562, https://openalex.org/W2167314788, https://openalex.org/W2093246761, https://openalex.org/W2015461150 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5194/egusphere-2025-3236 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5194/egusphere-2025-3236 |
| primary_location.id | doi:10.5194/egusphere-2025-3236 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5194/egusphere-2025-3236 |
| publication_date | 2025-08-11 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.% | 153, 225 |
| abstract_inverted_index.1 | 228 |
| abstract_inverted_index.5 | 175, 178 |
| abstract_inverted_index.a | 30, 173, 189, 197 |
| abstract_inverted_index.m | 112, 115, 215, 229, 232, 243, 246 |
| abstract_inverted_index.%) | 240 |
| abstract_inverted_index.10 | 68, 224 |
| abstract_inverted_index.30 | 231, 242 |
| abstract_inverted_index.90 | 111, 114 |
| abstract_inverted_index.By | 160 |
| abstract_inverted_index.It | 57 |
| abstract_inverted_index.ML | 131 |
| abstract_inverted_index.We | 90 |
| abstract_inverted_index.an | 6 |
| abstract_inverted_index.at | 155, 202 |
| abstract_inverted_index.by | 196, 209, 218, 222, 265 |
| abstract_inverted_index.in | 47, 95, 192, 200 |
| abstract_inverted_index.is | 5, 58 |
| abstract_inverted_index.km | 176, 179 |
| abstract_inverted_index.m) | 69, 80 |
| abstract_inverted_index.of | 44, 103, 213, 254 |
| abstract_inverted_index.on | 144 |
| abstract_inverted_index.to | 18, 41, 67, 74, 230, 244 |
| abstract_inverted_index.up | 73 |
| abstract_inverted_index.we | 166 |
| abstract_inverted_index.× | 113, 177 |
| abstract_inverted_index.%), | 220 |
| abstract_inverted_index.(~5 | 239 |
| abstract_inverted_index.0.1 | 214 |
| abstract_inverted_index.5-m | 145 |
| abstract_inverted_index.ALT | 35, 63, 92, 146, 170, 183, 216, 259 |
| abstract_inverted_index.Our | 186, 248 |
| abstract_inverted_index.and | 25, 29, 54, 70, 86, 122, 130, 139, 181, 234, 257, 269 |
| abstract_inverted_index.can | 16 |
| abstract_inverted_index.due | 40 |
| abstract_inverted_index.for | 10, 251, 261 |
| abstract_inverted_index.gas | 21 |
| abstract_inverted_index.how | 61 |
| abstract_inverted_index.the | 42, 96, 100, 203, 210, 262 |
| abstract_inverted_index.~10 | 219 |
| abstract_inverted_index.(~65 | 152 |
| abstract_inverted_index.10-m | 157 |
| abstract_inverted_index.RMSE | 207 |
| abstract_inverted_index.also | 59 |
| abstract_inverted_index.four | 110 |
| abstract_inverted_index.from | 82, 227, 241 |
| abstract_inverted_index.lead | 17 |
| abstract_inverted_index.maps | 171 |
| abstract_inverted_index.more | 235 |
| abstract_inverted_index.over | 109, 172 |
| abstract_inverted_index.that | 133 |
| abstract_inverted_index.with | 118 |
| abstract_inverted_index.(ALT) | 4 |
| abstract_inverted_index.(ML). | 125 |
| abstract_inverted_index.0.1-m | 169 |
| abstract_inverted_index.1,000 | 245 |
| abstract_inverted_index.Earth | 87 |
| abstract_inverted_index.Slope | 102 |
| abstract_inverted_index.drone | 164 |
| abstract_inverted_index.error | 237 |
| abstract_inverted_index.exert | 141 |
| abstract_inverted_index.field | 107, 128 |
| abstract_inverted_index.layer | 2 |
| abstract_inverted_index.level | 205 |
| abstract_inverted_index.local | 62 |
| abstract_inverted_index.rapid | 198 |
| abstract_inverted_index.scale | 72 |
| abstract_inverted_index.study | 249 |
| abstract_inverted_index.using | 127 |
| abstract_inverted_index.whose | 14 |
| abstract_inverted_index.(e.g., | 65, 78, 206 |
| abstract_inverted_index.Active | 1 |
| abstract_inverted_index.Alaska | 104 |
| abstract_inverted_index.Arctic | 264 |
| abstract_inverted_index.allows | 250 |
| abstract_inverted_index.cover, | 53 |
| abstract_inverted_index.global | 83 |
| abstract_inverted_index.larger | 174 |
| abstract_inverted_index.plots, | 116 |
| abstract_inverted_index.region | 180 |
| abstract_inverted_index.remote | 120, 255 |
| abstract_inverted_index.rocks, | 138 |
| abstract_inverted_index.scale. | 247 |
| abstract_inverted_index.showed | 188 |
| abstract_inverted_index.strong | 142 |
| abstract_inverted_index.system | 88 |
| abstract_inverted_index.tundra | 98 |
| abstract_inverted_index.within | 99 |
| abstract_inverted_index.altered | 23 |
| abstract_inverted_index.another | 223 |
| abstract_inverted_index.broader | 75 |
| abstract_inverted_index.climate | 8, 32 |
| abstract_inverted_index.climbed | 217 |
| abstract_inverted_index.coarser | 156 |
| abstract_inverted_index.damage, | 28 |
| abstract_inverted_index.further | 167 |
| abstract_inverted_index.machine | 123 |
| abstract_inverted_index.models. | 89 |
| abstract_inverted_index.remains | 38 |
| abstract_inverted_index.scaling | 184 |
| abstract_inverted_index.sensing | 121, 256 |
| abstract_inverted_index.spatial | 36, 93, 158 |
| abstract_inverted_index.surface | 55, 135 |
| abstract_inverted_index.terrain | 149 |
| abstract_inverted_index.through | 105 |
| abstract_inverted_index.unclear | 60 |
| abstract_inverted_index.whereas | 148 |
| abstract_inverted_index.Analysis | 126 |
| abstract_inverted_index.Northern | 101 |
| abstract_inverted_index.analysis | 187 |
| abstract_inverted_index.assessed | 91 |
| abstract_inverted_index.changing | 263 |
| abstract_inverted_index.cm-level | 162 |
| abstract_inverted_index.combined | 117 |
| abstract_inverted_index.controls | 150 |
| abstract_inverted_index.dominate | 151 |
| abstract_inverted_index.ecology, | 26 |
| abstract_inverted_index.effects. | 185 |
| abstract_inverted_index.examined | 182 |
| abstract_inverted_index.followed | 221 |
| abstract_inverted_index.imagery, | 165 |
| abstract_inverted_index.improved | 252 |
| abstract_inverted_index.increase | 199, 226, 238 |
| abstract_inverted_index.learning | 124 |
| abstract_inverted_index.patterns | 64 |
| abstract_inverted_index.positive | 31 |
| abstract_inverted_index.revealed | 132 |
| abstract_inverted_index.sampling | 108 |
| abstract_inverted_index.standard | 211 |
| abstract_inverted_index.terrain, | 48 |
| abstract_inverted_index.variable | 9 |
| abstract_inverted_index.wetness, | 136 |
| abstract_inverted_index.10–1000 | 79 |
| abstract_inverted_index.Abstract. | 0 |
| abstract_inverted_index.deepening | 15 |
| abstract_inverted_index.deviation | 212 |
| abstract_inverted_index.essential | 7 |
| abstract_inverted_index.feedback. | 33 |
| abstract_inverted_index.generated | 168 |
| abstract_inverted_index.hydrology | 24 |
| abstract_inverted_index.increased | 19 |
| abstract_inverted_index.influence | 43, 143 |
| abstract_inverted_index.intensive | 106 |
| abstract_inverted_index.landscape | 76 |
| abstract_inverted_index.localized | 45 |
| abstract_inverted_index.quadratic | 190 |
| abstract_inverted_index.satellite | 84 |
| abstract_inverted_index.snow/soil | 50 |
| abstract_inverted_index.sub-meter | 66, 204 |
| abstract_inverted_index.thickness | 3 |
| abstract_inverted_index.clarifying | 266 |
| abstract_inverted_index.emissions, | 22 |
| abstract_inverted_index.footprints | 77 |
| abstract_inverted_index.greenhouse | 20 |
| abstract_inverted_index.leveraging | 161 |
| abstract_inverted_index.mechanisms | 71 |
| abstract_inverted_index.monitoring | 11 |
| abstract_inverted_index.normalized | 208 |
| abstract_inverted_index.permafrost | 12 |
| abstract_inverted_index.subsurface | 137 |
| abstract_inverted_index.underlying | 270 |
| abstract_inverted_index.variations | 46 |
| abstract_inverted_index.vegetation | 52 |
| abstract_inverted_index.Quantifying | 34 |
| abstract_inverted_index.challenging | 39 |
| abstract_inverted_index.mechanisms. | 271 |
| abstract_inverted_index.properties, | 51 |
| abstract_inverted_index.represented | 81 |
| abstract_inverted_index.resolution, | 233 |
| abstract_inverted_index.resolution. | 159 |
| abstract_inverted_index.simulations | 260 |
| abstract_inverted_index.variations, | 147 |
| abstract_inverted_index.vegetation, | 134 |
| abstract_inverted_index.conservative | 236 |
| abstract_inverted_index.degradation, | 13 |
| abstract_inverted_index.multi-source | 119 |
| abstract_inverted_index.observations | 85, 129 |
| abstract_inverted_index.relationship | 191 |
| abstract_inverted_index.characterized | 195 |
| abstract_inverted_index.contribution) | 154 |
| abstract_inverted_index.disturbances. | 56 |
| abstract_inverted_index.heterogeneity | 37, 94 |
| abstract_inverted_index.microclimate, | 49 |
| abstract_inverted_index.process-based | 258 |
| abstract_inverted_index.uncertainties | 201, 268 |
| abstract_inverted_index.infrastructure | 27 |
| abstract_inverted_index.interpretation | 253 |
| abstract_inverted_index.uncertainties, | 194 |
| abstract_inverted_index.scale-dependent | 193, 267 |
| abstract_inverted_index.Arctic-foothills | 97 |
| abstract_inverted_index.micro-topography | 140 |
| abstract_inverted_index.optical-infrared | 163 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 12 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.5299999713897705 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.40380958 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |