Assessing systemic risk in financial markets using dynamic topic networks Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1038/s41598-022-06399-x
Systemic risk in financial markets refers to the breakdown of a financial system due to global events, catastrophes, or extreme incidents, leading to huge financial instability and losses. This study proposes a dynamic topic network (DTN) approach that combines topic modelling and network analysis to assess systemic risk in financial markets. We make use of Latent Dirichlet Allocation (LDA) to semantically analyse news articles, and the extracted topics then serve as input to construct topic similarity networks over time. Our results indicate how connected the topics are so that we can correlate any abnormal behaviours with volatility in the financial markets. With the 2015–2016 stock market selloff and COVID-19 as use cases, our results also suggest that the proposed DTN approach can provide an indication of (a) abnormal movement in the Dow Jones Industrial Average and (b) when the market would gradually begin to recover from such an event. From a practical risk management point of view, this analysis can be carried out on a daily basis when new data come in so that we can make use of the calculated metrics to predict real-time systemic risk in financial markets.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41598-022-06399-x
- https://www.nature.com/articles/s41598-022-06399-x.pdf
- OA Status
- gold
- Cited By
- 22
- References
- 51
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4212860010
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4212860010Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41598-022-06399-xDigital Object Identifier
- Title
-
Assessing systemic risk in financial markets using dynamic topic networksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-02-17Full publication date if available
- Authors
-
Mike K. P. So, Anson S. W. Mak, Amanda M. Y. ChuList of authors in order
- Landing page
-
https://doi.org/10.1038/s41598-022-06399-xPublisher landing page
- PDF URL
-
https://www.nature.com/articles/s41598-022-06399-x.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41598-022-06399-x.pdfDirect OA link when available
- Concepts
-
Systemic risk, Financial market, Latent Dirichlet allocation, Volatility (finance), Computer science, Stock (firearms), Construct (python library), Stock market, Topic model, Financial economics, Business, Financial crisis, Finance, Economics, Artificial intelligence, Macroeconomics, Paleontology, Mechanical engineering, Biology, Engineering, Programming language, HorseTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
22Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8, 2024: 6, 2023: 5, 2022: 3Per-year citation counts (last 5 years)
- References (count)
-
51Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4212860010 |
|---|---|
| doi | https://doi.org/10.1038/s41598-022-06399-x |
| ids.doi | https://doi.org/10.1038/s41598-022-06399-x |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/35177679 |
| ids.openalex | https://openalex.org/W4212860010 |
| fwci | 5.08074524 |
| type | article |
| title | Assessing systemic risk in financial markets using dynamic topic networks |
| biblio.issue | 1 |
| biblio.volume | 12 |
| biblio.last_page | 2668 |
| biblio.first_page | 2668 |
| topics[0].id | https://openalex.org/T11270 |
| topics[0].field.id | https://openalex.org/fields/20 |
| topics[0].field.display_name | Economics, Econometrics and Finance |
| topics[0].score | 0.9958999752998352 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2002 |
| topics[0].subfield.display_name | Economics and Econometrics |
| topics[0].display_name | Complex Systems and Time Series Analysis |
| topics[1].id | https://openalex.org/T11059 |
| topics[1].field.id | https://openalex.org/fields/20 |
| topics[1].field.display_name | Economics, Econometrics and Finance |
| topics[1].score | 0.9940999746322632 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2002 |
| topics[1].subfield.display_name | Economics and Econometrics |
| topics[1].display_name | Market Dynamics and Volatility |
| topics[2].id | https://openalex.org/T10282 |
| topics[2].field.id | https://openalex.org/fields/20 |
| topics[2].field.display_name | Economics, Econometrics and Finance |
| topics[2].score | 0.9498999714851379 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2003 |
| topics[2].subfield.display_name | Finance |
| topics[2].display_name | Financial Risk and Volatility Modeling |
| is_xpac | False |
| apc_list.value | 1890 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2190 |
| apc_paid.value | 1890 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2190 |
| concepts[0].id | https://openalex.org/C144587487 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8488342761993408 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1369234 |
| concepts[0].display_name | Systemic risk |
| concepts[1].id | https://openalex.org/C19244329 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7310655117034912 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q208697 |
| concepts[1].display_name | Financial market |
| concepts[2].id | https://openalex.org/C500882744 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6646208763122559 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q269236 |
| concepts[2].display_name | Latent Dirichlet allocation |
| concepts[3].id | https://openalex.org/C91602232 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5458548069000244 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q756115 |
| concepts[3].display_name | Volatility (finance) |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.509847104549408 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C204036174 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4559202790260315 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q909380 |
| concepts[5].display_name | Stock (firearms) |
| concepts[6].id | https://openalex.org/C2780801425 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4373663067817688 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5164392 |
| concepts[6].display_name | Construct (python library) |
| concepts[7].id | https://openalex.org/C2780299701 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4134059250354767 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q475000 |
| concepts[7].display_name | Stock market |
| concepts[8].id | https://openalex.org/C171686336 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4118781089782715 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3532085 |
| concepts[8].display_name | Topic model |
| concepts[9].id | https://openalex.org/C106159729 |
| concepts[9].level | 1 |
| concepts[9].score | 0.36558297276496887 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2294553 |
| concepts[9].display_name | Financial economics |
| concepts[10].id | https://openalex.org/C144133560 |
| concepts[10].level | 0 |
| concepts[10].score | 0.33124077320098877 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[10].display_name | Business |
| concepts[11].id | https://openalex.org/C2778300220 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3047991693019867 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q114380 |
| concepts[11].display_name | Financial crisis |
| concepts[12].id | https://openalex.org/C10138342 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2957812547683716 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q43015 |
| concepts[12].display_name | Finance |
| concepts[13].id | https://openalex.org/C162324750 |
| concepts[13].level | 0 |
| concepts[13].score | 0.2954329550266266 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[13].display_name | Economics |
| concepts[14].id | https://openalex.org/C154945302 |
| concepts[14].level | 1 |
| concepts[14].score | 0.21336612105369568 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[14].display_name | Artificial intelligence |
| concepts[15].id | https://openalex.org/C139719470 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q39680 |
| concepts[15].display_name | Macroeconomics |
| concepts[16].id | https://openalex.org/C151730666 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[16].display_name | Paleontology |
| concepts[17].id | https://openalex.org/C78519656 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[17].display_name | Mechanical engineering |
| concepts[18].id | https://openalex.org/C86803240 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[18].display_name | Biology |
| concepts[19].id | https://openalex.org/C127413603 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[19].display_name | Engineering |
| concepts[20].id | https://openalex.org/C199360897 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[20].display_name | Programming language |
| concepts[21].id | https://openalex.org/C2780762169 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q5905368 |
| concepts[21].display_name | Horse |
| keywords[0].id | https://openalex.org/keywords/systemic-risk |
| keywords[0].score | 0.8488342761993408 |
| keywords[0].display_name | Systemic risk |
| keywords[1].id | https://openalex.org/keywords/financial-market |
| keywords[1].score | 0.7310655117034912 |
| keywords[1].display_name | Financial market |
| keywords[2].id | https://openalex.org/keywords/latent-dirichlet-allocation |
| keywords[2].score | 0.6646208763122559 |
| keywords[2].display_name | Latent Dirichlet allocation |
| keywords[3].id | https://openalex.org/keywords/volatility |
| keywords[3].score | 0.5458548069000244 |
| keywords[3].display_name | Volatility (finance) |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.509847104549408 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/stock |
| keywords[5].score | 0.4559202790260315 |
| keywords[5].display_name | Stock (firearms) |
| keywords[6].id | https://openalex.org/keywords/construct |
| keywords[6].score | 0.4373663067817688 |
| keywords[6].display_name | Construct (python library) |
| keywords[7].id | https://openalex.org/keywords/stock-market |
| keywords[7].score | 0.4134059250354767 |
| keywords[7].display_name | Stock market |
| keywords[8].id | https://openalex.org/keywords/topic-model |
| keywords[8].score | 0.4118781089782715 |
| keywords[8].display_name | Topic model |
| keywords[9].id | https://openalex.org/keywords/financial-economics |
| keywords[9].score | 0.36558297276496887 |
| keywords[9].display_name | Financial economics |
| keywords[10].id | https://openalex.org/keywords/business |
| keywords[10].score | 0.33124077320098877 |
| keywords[10].display_name | Business |
| keywords[11].id | https://openalex.org/keywords/financial-crisis |
| keywords[11].score | 0.3047991693019867 |
| keywords[11].display_name | Financial crisis |
| keywords[12].id | https://openalex.org/keywords/finance |
| keywords[12].score | 0.2957812547683716 |
| keywords[12].display_name | Finance |
| keywords[13].id | https://openalex.org/keywords/economics |
| keywords[13].score | 0.2954329550266266 |
| keywords[13].display_name | Economics |
| keywords[14].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[14].score | 0.21336612105369568 |
| keywords[14].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1038/s41598-022-06399-x |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S196734849 |
| locations[0].source.issn | 2045-2322 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2045-2322 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Scientific Reports |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.nature.com/articles/s41598-022-06399-x.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Scientific Reports |
| locations[0].landing_page_url | https://doi.org/10.1038/s41598-022-06399-x |
| locations[1].id | pmid:35177679 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Scientific reports |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/35177679 |
| locations[2].id | pmh:oai:doaj.org/article:bb0ed79450134a4abaffb358cc3eb470 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Scientific Reports, Vol 12, Iss 1, Pp 1-15 (2022) |
| locations[2].landing_page_url | https://doaj.org/article/bb0ed79450134a4abaffb358cc3eb470 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:8854714 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sci Rep |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8854714 |
| locations[4].id | pmh:oai:repository.hkust.edu.hk:1783.1-116183 |
| locations[4].is_oa | False |
| locations[4].source | |
| locations[4].license | |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Article |
| locations[4].license_id | |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | |
| locations[4].landing_page_url | http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=LinksAMR&SrcApp=PARTNER_APP&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000757537100038 |
| locations[5].id | pmh:oai:repository.ust.hk:1783.1-116183 |
| locations[5].is_oa | False |
| locations[5].source.id | https://openalex.org/S4306401796 |
| locations[5].source.issn | |
| locations[5].source.type | repository |
| locations[5].source.is_oa | False |
| locations[5].source.issn_l | |
| locations[5].source.is_core | False |
| locations[5].source.is_in_doaj | False |
| locations[5].source.display_name | Rare & Special e-Zone (The Hong Kong University of Science and Technology) |
| locations[5].source.host_organization | https://openalex.org/I200769079 |
| locations[5].source.host_organization_name | Hong Kong University of Science and Technology |
| locations[5].source.host_organization_lineage | https://openalex.org/I200769079 |
| locations[5].license | |
| locations[5].pdf_url | |
| locations[5].version | submittedVersion |
| locations[5].raw_type | Article |
| locations[5].license_id | |
| locations[5].is_accepted | False |
| locations[5].is_published | False |
| locations[5].raw_source_name | |
| locations[5].landing_page_url | http://repository.ust.hk/ir/Record/1783.1-116183 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5061166145 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0781-8166 |
| authorships[0].author.display_name | Mike K. P. So |
| authorships[0].countries | HK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I200769079, https://openalex.org/I889458895 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Information Systems, Business Statistics and Operations Management, The Hong Kong University of Science and Technology, Hong Kong, China |
| authorships[0].institutions[0].id | https://openalex.org/I200769079 |
| authorships[0].institutions[0].ror | https://ror.org/00q4vv597 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I200769079 |
| authorships[0].institutions[0].country_code | HK |
| authorships[0].institutions[0].display_name | Hong Kong University of Science and Technology |
| authorships[0].institutions[1].id | https://openalex.org/I889458895 |
| authorships[0].institutions[1].ror | https://ror.org/02zhqgq86 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I889458895 |
| authorships[0].institutions[1].country_code | HK |
| authorships[0].institutions[1].display_name | University of Hong Kong |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mike K. P. So |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Information Systems, Business Statistics and Operations Management, The Hong Kong University of Science and Technology, Hong Kong, China |
| authorships[1].author.id | https://openalex.org/A5008323756 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Anson S. W. Mak |
| authorships[1].countries | NL |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I887064364 |
| authorships[1].affiliations[0].raw_affiliation_string | Faculty of Science, University of Amsterdam, 1098XH, Amsterdam, The Netherlands |
| authorships[1].institutions[0].id | https://openalex.org/I887064364 |
| authorships[1].institutions[0].ror | https://ror.org/04dkp9463 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I887064364 |
| authorships[1].institutions[0].country_code | NL |
| authorships[1].institutions[0].display_name | University of Amsterdam |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Anson S. W. Mak |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Faculty of Science, University of Amsterdam, 1098XH, Amsterdam, The Netherlands |
| authorships[2].author.id | https://openalex.org/A5069990345 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9543-747X |
| authorships[2].author.display_name | Amanda M. Y. Chu |
| authorships[2].countries | HK |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210086892 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Social Sciences, The Education University of Hong Kong, Hong Kong, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210086892 |
| authorships[2].institutions[0].ror | https://ror.org/000t0f062 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210086892 |
| authorships[2].institutions[0].country_code | HK |
| authorships[2].institutions[0].display_name | Education University of Hong Kong |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Amanda M. Y. Chu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Social Sciences, The Education University of Hong Kong, Hong Kong, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41598-022-06399-x.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Assessing systemic risk in financial markets using dynamic topic networks |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11270 |
| primary_topic.field.id | https://openalex.org/fields/20 |
| primary_topic.field.display_name | Economics, Econometrics and Finance |
| primary_topic.score | 0.9958999752998352 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2002 |
| primary_topic.subfield.display_name | Economics and Econometrics |
| primary_topic.display_name | Complex Systems and Time Series Analysis |
| related_works | https://openalex.org/W2769501189, https://openalex.org/W4315588616, https://openalex.org/W4312773271, https://openalex.org/W2888805565, https://openalex.org/W2962686197, https://openalex.org/W3005513013, https://openalex.org/W2207653751, https://openalex.org/W2611137333, https://openalex.org/W4389543811, https://openalex.org/W4291700620 |
| cited_by_count | 22 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 3 |
| locations_count | 6 |
| best_oa_location.id | doi:10.1038/s41598-022-06399-x |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S196734849 |
| best_oa_location.source.issn | 2045-2322 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2045-2322 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Scientific Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41598-022-06399-x.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Scientific Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41598-022-06399-x |
| primary_location.id | doi:10.1038/s41598-022-06399-x |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S196734849 |
| primary_location.source.issn | 2045-2322 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2045-2322 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Scientific Reports |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.nature.com/articles/s41598-022-06399-x.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Scientific Reports |
| primary_location.landing_page_url | https://doi.org/10.1038/s41598-022-06399-x |
| publication_date | 2022-02-17 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2162337502, https://openalex.org/W2037102228, https://openalex.org/W2973395251, https://openalex.org/W3038942251, https://openalex.org/W1993067437, https://openalex.org/W3089147409, https://openalex.org/W3122758356, https://openalex.org/W3123780646, https://openalex.org/W3123091365, https://openalex.org/W1998450312, https://openalex.org/W2117899923, https://openalex.org/W2241368559, https://openalex.org/W1892403611, https://openalex.org/W2946428698, https://openalex.org/W3199669065, https://openalex.org/W1976483110, https://openalex.org/W2947412763, https://openalex.org/W2067361139, https://openalex.org/W3016752284, https://openalex.org/W3044693676, https://openalex.org/W4236948461, https://openalex.org/W3025870819, https://openalex.org/W1774528714, https://openalex.org/W3123809656, https://openalex.org/W2788057825, https://openalex.org/W3122797939, https://openalex.org/W2056590539, https://openalex.org/W2171468534, https://openalex.org/W2556622281, https://openalex.org/W2132022337, https://openalex.org/W1978710835, https://openalex.org/W2035955342, https://openalex.org/W2783755930, https://openalex.org/W2754205305, https://openalex.org/W3122768207, https://openalex.org/W3021677987, https://openalex.org/W3032312400, https://openalex.org/W3134381892, https://openalex.org/W3135488099, https://openalex.org/W3108550559, https://openalex.org/W3131020119, https://openalex.org/W3183887976, https://openalex.org/W2545679425, https://openalex.org/W2963461859, https://openalex.org/W2160170318, https://openalex.org/W2107092366, https://openalex.org/W3123933399, https://openalex.org/W2885203629, https://openalex.org/W3104803997, https://openalex.org/W3104358692, https://openalex.org/W1987285546 |
| referenced_works_count | 51 |
| abstract_inverted_index.a | 11, 32, 151, 165 |
| abstract_inverted_index.We | 52 |
| abstract_inverted_index.an | 124, 148 |
| abstract_inverted_index.as | 71, 110 |
| abstract_inverted_index.be | 161 |
| abstract_inverted_index.in | 3, 49, 98, 130, 172, 188 |
| abstract_inverted_index.of | 10, 55, 126, 156, 179 |
| abstract_inverted_index.on | 164 |
| abstract_inverted_index.or | 19 |
| abstract_inverted_index.so | 88, 173 |
| abstract_inverted_index.to | 7, 15, 23, 45, 60, 73, 144, 183 |
| abstract_inverted_index.we | 90, 175 |
| abstract_inverted_index.(a) | 127 |
| abstract_inverted_index.(b) | 137 |
| abstract_inverted_index.DTN | 120 |
| abstract_inverted_index.Dow | 132 |
| abstract_inverted_index.Our | 80 |
| abstract_inverted_index.and | 27, 42, 65, 108, 136 |
| abstract_inverted_index.any | 93 |
| abstract_inverted_index.are | 87 |
| abstract_inverted_index.can | 91, 122, 160, 176 |
| abstract_inverted_index.due | 14 |
| abstract_inverted_index.how | 83 |
| abstract_inverted_index.new | 169 |
| abstract_inverted_index.our | 113 |
| abstract_inverted_index.out | 163 |
| abstract_inverted_index.the | 8, 66, 85, 99, 103, 118, 131, 139, 180 |
| abstract_inverted_index.use | 54, 111, 178 |
| abstract_inverted_index.From | 150 |
| abstract_inverted_index.This | 29 |
| abstract_inverted_index.With | 102 |
| abstract_inverted_index.also | 115 |
| abstract_inverted_index.come | 171 |
| abstract_inverted_index.data | 170 |
| abstract_inverted_index.from | 146 |
| abstract_inverted_index.huge | 24 |
| abstract_inverted_index.make | 53, 177 |
| abstract_inverted_index.news | 63 |
| abstract_inverted_index.over | 78 |
| abstract_inverted_index.risk | 2, 48, 153, 187 |
| abstract_inverted_index.such | 147 |
| abstract_inverted_index.that | 38, 89, 117, 174 |
| abstract_inverted_index.then | 69 |
| abstract_inverted_index.this | 158 |
| abstract_inverted_index.when | 138, 168 |
| abstract_inverted_index.with | 96 |
| abstract_inverted_index.(DTN) | 36 |
| abstract_inverted_index.(LDA) | 59 |
| abstract_inverted_index.Jones | 133 |
| abstract_inverted_index.basis | 167 |
| abstract_inverted_index.begin | 143 |
| abstract_inverted_index.daily | 166 |
| abstract_inverted_index.input | 72 |
| abstract_inverted_index.point | 155 |
| abstract_inverted_index.serve | 70 |
| abstract_inverted_index.stock | 105 |
| abstract_inverted_index.study | 30 |
| abstract_inverted_index.time. | 79 |
| abstract_inverted_index.topic | 34, 40, 75 |
| abstract_inverted_index.view, | 157 |
| abstract_inverted_index.would | 141 |
| abstract_inverted_index.Latent | 56 |
| abstract_inverted_index.assess | 46 |
| abstract_inverted_index.cases, | 112 |
| abstract_inverted_index.event. | 149 |
| abstract_inverted_index.global | 16 |
| abstract_inverted_index.market | 106, 140 |
| abstract_inverted_index.refers | 6 |
| abstract_inverted_index.system | 13 |
| abstract_inverted_index.topics | 68, 86 |
| abstract_inverted_index.Average | 135 |
| abstract_inverted_index.analyse | 62 |
| abstract_inverted_index.carried | 162 |
| abstract_inverted_index.dynamic | 33 |
| abstract_inverted_index.events, | 17 |
| abstract_inverted_index.extreme | 20 |
| abstract_inverted_index.leading | 22 |
| abstract_inverted_index.losses. | 28 |
| abstract_inverted_index.markets | 5 |
| abstract_inverted_index.metrics | 182 |
| abstract_inverted_index.network | 35, 43 |
| abstract_inverted_index.predict | 184 |
| abstract_inverted_index.provide | 123 |
| abstract_inverted_index.recover | 145 |
| abstract_inverted_index.results | 81, 114 |
| abstract_inverted_index.selloff | 107 |
| abstract_inverted_index.suggest | 116 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.COVID-19 | 109 |
| abstract_inverted_index.Systemic | 1 |
| abstract_inverted_index.abnormal | 94, 128 |
| abstract_inverted_index.analysis | 44, 159 |
| abstract_inverted_index.approach | 37, 121 |
| abstract_inverted_index.combines | 39 |
| abstract_inverted_index.indicate | 82 |
| abstract_inverted_index.markets. | 51, 101, 190 |
| abstract_inverted_index.movement | 129 |
| abstract_inverted_index.networks | 77 |
| abstract_inverted_index.proposed | 119 |
| abstract_inverted_index.proposes | 31 |
| abstract_inverted_index.systemic | 47, 186 |
| abstract_inverted_index.Dirichlet | 57 |
| abstract_inverted_index.articles, | 64 |
| abstract_inverted_index.breakdown | 9 |
| abstract_inverted_index.connected | 84 |
| abstract_inverted_index.construct | 74 |
| abstract_inverted_index.correlate | 92 |
| abstract_inverted_index.extracted | 67 |
| abstract_inverted_index.financial | 4, 12, 25, 50, 100, 189 |
| abstract_inverted_index.gradually | 142 |
| abstract_inverted_index.modelling | 41 |
| abstract_inverted_index.practical | 152 |
| abstract_inverted_index.real-time | 185 |
| abstract_inverted_index.Allocation | 58 |
| abstract_inverted_index.Industrial | 134 |
| abstract_inverted_index.behaviours | 95 |
| abstract_inverted_index.calculated | 181 |
| abstract_inverted_index.incidents, | 21 |
| abstract_inverted_index.indication | 125 |
| abstract_inverted_index.management | 154 |
| abstract_inverted_index.similarity | 76 |
| abstract_inverted_index.volatility | 97 |
| abstract_inverted_index.2015–2016 | 104 |
| abstract_inverted_index.instability | 26 |
| abstract_inverted_index.semantically | 61 |
| abstract_inverted_index.catastrophes, | 18 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5061166145 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I200769079, https://openalex.org/I889458895 |
| citation_normalized_percentile.value | 0.95052006 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |