Assessment of Dynamic Swarm Heterogeneous Clustering in Cognitive Radio Sensor Networks Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1155/2022/7359210
Many optimization algorithms have been created to determine the most energy‐efficient transmission mode, allowing for lower power consumption during transmission over shorter distances while minimising interference from primary users (PUs). The improved cooperative clustering algorithm (ICCA) performs superior spectrum sensing across groups of multiusers compared to any other method currently available in terms of sensing inaccuracy, power savings, and convergence time than any other method currently available. The proposed ICCA algorithm is employed in this research study to find the optimal numbers of clusters based on its connectivity and the most energy‐efficient distributed cluster‐based sensing technique available. In this research, many randomly chosen secondary users (SUs) and primary users (PUs) are investigated for potential implementation opportunities. Therefore, as compared to the current optimization strategies, the proposed ICCA algorithm enhanced the convergence speed by integrating the multiuser clustered communication into a single communication channel. Experimental results revealed that the new ICCA algorithm reduced node power by 9.646 percent compared to traditional ways when comparing the novel algorithm to conventional approaches. In a similar vein, as compared to the prior methodologies, the ICCA algorithm reduced the average node power of SUs by 24.23 percent on average. When the SNR is decreased to values below 2 dB, the likelihood of detection improves dramatically, as seen in the figure. ICCA has a low false alarm rate when matched to other optimization algorithms for direct detection, and the proposed method outperforms them all. Following the findings of the simulations, the proposed ICCA technique effectively addresses multimodal optimization difficulties and optimizes network capacity performance in wireless networks. A detailed discussion of SS applications for the IoT and wireless sensor networks, both based on CR, is provided. There is also a thorough discussion of the most recent advancements in spectrum sensing as a facility. IoT or WSN may be essential in feeding the CR networks with spectrum sensing data and the future of spectrum sensing. The use of CR for fifth generation and afar its potential application in frequency allocation are discussed. To stay up with the advancement of communication technology, SS should give additional features to remain competitive, like the capacity to investigate various available channels and accessible places for transmission. Based on present and prospective methods in wireless communications, we highlight the crucial upcoming study paths and difficulty spots in signal processing for cognitive radio and potential solutions (SS‐CR).
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1155/2022/7359210
- https://downloads.hindawi.com/journals/wcmc/2022/7359210.pdf
- OA Status
- hybrid
- Cited By
- 11
- References
- 43
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4283360064
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4283360064Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1155/2022/7359210Digital Object Identifier
- Title
-
Assessment of Dynamic Swarm Heterogeneous Clustering in Cognitive Radio Sensor NetworksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-01Full publication date if available
- Authors
-
Ruby Bhatt, Edeh Michael Onyema, Khalid K. Almuzaini, Celestine Iwendi, Shahab S. Band, Tripti Sharma, Amir MosaviList of authors in order
- Landing page
-
https://doi.org/10.1155/2022/7359210Publisher landing page
- PDF URL
-
https://downloads.hindawi.com/journals/wcmc/2022/7359210.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://downloads.hindawi.com/journals/wcmc/2022/7359210.pdfDirect OA link when available
- Concepts
-
Computer science, Cognitive radio, Cluster analysis, Transmission (telecommunications), Wireless sensor network, Node (physics), False alarm, Convergence (economics), Energy consumption, Interference (communication), Energy (signal processing), Algorithm, Real-time computing, Channel (broadcasting), Wireless, Computer network, Telecommunications, Artificial intelligence, Engineering, Economic growth, Mathematics, Biology, Economics, Structural engineering, Ecology, StatisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 4, 2023: 5, 2022: 2Per-year citation counts (last 5 years)
- References (count)
-
43Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4283360064 |
|---|---|
| doi | https://doi.org/10.1155/2022/7359210 |
| ids.doi | https://doi.org/10.1155/2022/7359210 |
| ids.openalex | https://openalex.org/W4283360064 |
| fwci | 2.35665919 |
| type | article |
| title | Assessment of Dynamic Swarm Heterogeneous Clustering in Cognitive Radio Sensor Networks |
| biblio.issue | 1 |
| biblio.volume | 2022 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10579 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9983000159263611 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Cognitive Radio Networks and Spectrum Sensing |
| topics[1].id | https://openalex.org/T13052 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9801999926567078 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Molecular Communication and Nanonetworks |
| topics[2].id | https://openalex.org/T10080 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9764000177383423 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Energy Efficient Wireless Sensor Networks |
| funders[0].id | https://openalex.org/F4320322997 |
| funders[0].ror | https://ror.org/05tdz6m39 |
| funders[0].display_name | King Abdulaziz City for Science and Technology |
| is_xpac | False |
| apc_list.value | 2300 |
| apc_list.currency | USD |
| apc_list.value_usd | 2300 |
| apc_paid.value | 2300 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2300 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8523674011230469 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C149946192 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6888006925582886 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3235733 |
| concepts[1].display_name | Cognitive radio |
| concepts[2].id | https://openalex.org/C73555534 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6687378883361816 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[2].display_name | Cluster analysis |
| concepts[3].id | https://openalex.org/C761482 |
| concepts[3].level | 2 |
| concepts[3].score | 0.523071825504303 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q118093 |
| concepts[3].display_name | Transmission (telecommunications) |
| concepts[4].id | https://openalex.org/C24590314 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5169050693511963 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q336038 |
| concepts[4].display_name | Wireless sensor network |
| concepts[5].id | https://openalex.org/C62611344 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4858822226524353 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1062658 |
| concepts[5].display_name | Node (physics) |
| concepts[6].id | https://openalex.org/C2776836416 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4674452543258667 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1364844 |
| concepts[6].display_name | False alarm |
| concepts[7].id | https://openalex.org/C2777303404 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4623521566390991 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[7].display_name | Convergence (economics) |
| concepts[8].id | https://openalex.org/C2780165032 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4407433271408081 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q16869822 |
| concepts[8].display_name | Energy consumption |
| concepts[9].id | https://openalex.org/C32022120 |
| concepts[9].level | 3 |
| concepts[9].score | 0.43749961256980896 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q797225 |
| concepts[9].display_name | Interference (communication) |
| concepts[10].id | https://openalex.org/C186370098 |
| concepts[10].level | 2 |
| concepts[10].score | 0.43134722113609314 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q442787 |
| concepts[10].display_name | Energy (signal processing) |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.428345263004303 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C79403827 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3938063383102417 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[12].display_name | Real-time computing |
| concepts[13].id | https://openalex.org/C127162648 |
| concepts[13].level | 2 |
| concepts[13].score | 0.361348032951355 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[13].display_name | Channel (broadcasting) |
| concepts[14].id | https://openalex.org/C555944384 |
| concepts[14].level | 2 |
| concepts[14].score | 0.3106997013092041 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q249 |
| concepts[14].display_name | Wireless |
| concepts[15].id | https://openalex.org/C31258907 |
| concepts[15].level | 1 |
| concepts[15].score | 0.18388983607292175 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[15].display_name | Computer network |
| concepts[16].id | https://openalex.org/C76155785 |
| concepts[16].level | 1 |
| concepts[16].score | 0.14427760243415833 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[16].display_name | Telecommunications |
| concepts[17].id | https://openalex.org/C154945302 |
| concepts[17].level | 1 |
| concepts[17].score | 0.128449946641922 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[17].display_name | Artificial intelligence |
| concepts[18].id | https://openalex.org/C127413603 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[18].display_name | Engineering |
| concepts[19].id | https://openalex.org/C50522688 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[19].display_name | Economic growth |
| concepts[20].id | https://openalex.org/C33923547 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[20].display_name | Mathematics |
| concepts[21].id | https://openalex.org/C86803240 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[21].display_name | Biology |
| concepts[22].id | https://openalex.org/C162324750 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[22].display_name | Economics |
| concepts[23].id | https://openalex.org/C66938386 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[23].display_name | Structural engineering |
| concepts[24].id | https://openalex.org/C18903297 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[24].display_name | Ecology |
| concepts[25].id | https://openalex.org/C105795698 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[25].display_name | Statistics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8523674011230469 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/cognitive-radio |
| keywords[1].score | 0.6888006925582886 |
| keywords[1].display_name | Cognitive radio |
| keywords[2].id | https://openalex.org/keywords/cluster-analysis |
| keywords[2].score | 0.6687378883361816 |
| keywords[2].display_name | Cluster analysis |
| keywords[3].id | https://openalex.org/keywords/transmission |
| keywords[3].score | 0.523071825504303 |
| keywords[3].display_name | Transmission (telecommunications) |
| keywords[4].id | https://openalex.org/keywords/wireless-sensor-network |
| keywords[4].score | 0.5169050693511963 |
| keywords[4].display_name | Wireless sensor network |
| keywords[5].id | https://openalex.org/keywords/node |
| keywords[5].score | 0.4858822226524353 |
| keywords[5].display_name | Node (physics) |
| keywords[6].id | https://openalex.org/keywords/false-alarm |
| keywords[6].score | 0.4674452543258667 |
| keywords[6].display_name | False alarm |
| keywords[7].id | https://openalex.org/keywords/convergence |
| keywords[7].score | 0.4623521566390991 |
| keywords[7].display_name | Convergence (economics) |
| keywords[8].id | https://openalex.org/keywords/energy-consumption |
| keywords[8].score | 0.4407433271408081 |
| keywords[8].display_name | Energy consumption |
| keywords[9].id | https://openalex.org/keywords/interference |
| keywords[9].score | 0.43749961256980896 |
| keywords[9].display_name | Interference (communication) |
| keywords[10].id | https://openalex.org/keywords/energy |
| keywords[10].score | 0.43134722113609314 |
| keywords[10].display_name | Energy (signal processing) |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.428345263004303 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/real-time-computing |
| keywords[12].score | 0.3938063383102417 |
| keywords[12].display_name | Real-time computing |
| keywords[13].id | https://openalex.org/keywords/channel |
| keywords[13].score | 0.361348032951355 |
| keywords[13].display_name | Channel (broadcasting) |
| keywords[14].id | https://openalex.org/keywords/wireless |
| keywords[14].score | 0.3106997013092041 |
| keywords[14].display_name | Wireless |
| keywords[15].id | https://openalex.org/keywords/computer-network |
| keywords[15].score | 0.18388983607292175 |
| keywords[15].display_name | Computer network |
| keywords[16].id | https://openalex.org/keywords/telecommunications |
| keywords[16].score | 0.14427760243415833 |
| keywords[16].display_name | Telecommunications |
| keywords[17].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[17].score | 0.128449946641922 |
| keywords[17].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1155/2022/7359210 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S235346 |
| locations[0].source.issn | 1530-8669, 1530-8677 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1530-8669 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Wireless Communications and Mobile Computing |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://downloads.hindawi.com/journals/wcmc/2022/7359210.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Wireless Communications and Mobile Computing |
| locations[0].landing_page_url | https://doi.org/10.1155/2022/7359210 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5006104177 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1872-8828 |
| authorships[0].author.display_name | Ruby Bhatt |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210119567 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science, Medicaps University, Indore, Madhya Pradesh, India |
| authorships[0].institutions[0].id | https://openalex.org/I4210119567 |
| authorships[0].institutions[0].ror | https://ror.org/02svf5f06 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210119567 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Medi-Caps University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ruby Bhatt |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science, Medicaps University, Indore, Madhya Pradesh, India |
| authorships[1].author.id | https://openalex.org/A5023595045 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4067-3256 |
| authorships[1].author.display_name | Edeh Michael Onyema |
| authorships[1].countries | NG |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I70593384 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Mathematics and Computer Science, Coal City University, Enugu, Nigeria |
| authorships[1].institutions[0].id | https://openalex.org/I70593384 |
| authorships[1].institutions[0].ror | https://ror.org/043z5qa52 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I70593384 |
| authorships[1].institutions[0].country_code | NG |
| authorships[1].institutions[0].display_name | Lead City University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Edeh Michael Onyema |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Mathematics and Computer Science, Coal City University, Enugu, Nigeria |
| authorships[2].author.id | https://openalex.org/A5030032870 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4458-3730 |
| authorships[2].author.display_name | Khalid K. Almuzaini |
| authorships[2].countries | SA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1284598098 |
| authorships[2].affiliations[0].raw_affiliation_string | National Center for Cybersecurity Technologies (C4C), King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia |
| authorships[2].institutions[0].id | https://openalex.org/I1284598098 |
| authorships[2].institutions[0].ror | https://ror.org/05tdz6m39 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I1284598098 |
| authorships[2].institutions[0].country_code | SA |
| authorships[2].institutions[0].display_name | King Abdulaziz City for Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Khalid K. Almuzaini |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | National Center for Cybersecurity Technologies (C4C), King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia |
| authorships[3].author.id | https://openalex.org/A5081281059 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4350-3911 |
| authorships[3].author.display_name | Celestine Iwendi |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I165678365 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Creative Technologies, University of Bolton, UK |
| authorships[3].institutions[0].id | https://openalex.org/I165678365 |
| authorships[3].institutions[0].ror | https://ror.org/01t884y44 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I165678365 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | University of Bolton |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Celestine Iwendi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Creative Technologies, University of Bolton, UK |
| authorships[4].author.id | https://openalex.org/A5006293953 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6109-1311 |
| authorships[4].author.display_name | Shahab S. Band |
| authorships[4].countries | TW |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I75357094 |
| authorships[4].affiliations[0].raw_affiliation_string | Future Technology Research Center, College of Future, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan |
| authorships[4].institutions[0].id | https://openalex.org/I75357094 |
| authorships[4].institutions[0].ror | https://ror.org/04qkq2m54 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I75357094 |
| authorships[4].institutions[0].country_code | TW |
| authorships[4].institutions[0].display_name | National Yunlin University of Science and Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Shahab S. Band |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Future Technology Research Center, College of Future, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan |
| authorships[5].author.id | https://openalex.org/A5047207264 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8692-261X |
| authorships[5].author.display_name | Tripti Sharma |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Information Technology, Maharaja Surajmal Institute of Technology, 110058 New Delhi, India |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Tripti Sharma |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Information Technology, Maharaja Surajmal Institute of Technology, 110058 New Delhi, India |
| authorships[6].author.id | https://openalex.org/A5109011370 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Amir Mosavi |
| authorships[6].countries | HU |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I103356709 |
| authorships[6].affiliations[0].raw_affiliation_string | John Von Neumann Faculty of Informatics, Obuda University, Budapest, Hungary |
| authorships[6].institutions[0].id | https://openalex.org/I103356709 |
| authorships[6].institutions[0].ror | https://ror.org/00ax71d21 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I103356709 |
| authorships[6].institutions[0].country_code | HU |
| authorships[6].institutions[0].display_name | Obuda University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Amir Mosavi |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | John Von Neumann Faculty of Informatics, Obuda University, Budapest, Hungary |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://downloads.hindawi.com/journals/wcmc/2022/7359210.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Assessment of Dynamic Swarm Heterogeneous Clustering in Cognitive Radio Sensor Networks |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10579 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9983000159263611 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Cognitive Radio Networks and Spectrum Sensing |
| related_works | https://openalex.org/W2181410425, https://openalex.org/W2051888740, https://openalex.org/W2382279859, https://openalex.org/W2046691252, https://openalex.org/W3203708548, https://openalex.org/W2384472869, https://openalex.org/W2132580384, https://openalex.org/W1973050875, https://openalex.org/W2003835194, https://openalex.org/W1996209778 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1155/2022/7359210 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S235346 |
| best_oa_location.source.issn | 1530-8669, 1530-8677 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1530-8669 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Wireless Communications and Mobile Computing |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://downloads.hindawi.com/journals/wcmc/2022/7359210.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Wireless Communications and Mobile Computing |
| best_oa_location.landing_page_url | https://doi.org/10.1155/2022/7359210 |
| primary_location.id | doi:10.1155/2022/7359210 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S235346 |
| primary_location.source.issn | 1530-8669, 1530-8677 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1530-8669 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Wireless Communications and Mobile Computing |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://downloads.hindawi.com/journals/wcmc/2022/7359210.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Wireless Communications and Mobile Computing |
| primary_location.landing_page_url | https://doi.org/10.1155/2022/7359210 |
| publication_date | 2022-01-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2809900767, https://openalex.org/W2905393884, https://openalex.org/W2950950544, https://openalex.org/W2943148057, https://openalex.org/W3164404198, https://openalex.org/W4221108109, https://openalex.org/W2777948323, https://openalex.org/W2043235075, https://openalex.org/W4283365097, https://openalex.org/W4301340643, https://openalex.org/W4210324931, https://openalex.org/W3138094384, https://openalex.org/W3092308834, https://openalex.org/W3128839543, https://openalex.org/W4200041533, https://openalex.org/W3005965793, https://openalex.org/W3045980433, https://openalex.org/W2955740114, https://openalex.org/W3192646885, https://openalex.org/W3034407007, https://openalex.org/W3198584807, https://openalex.org/W4220894258, https://openalex.org/W4245898183, https://openalex.org/W2958430280, https://openalex.org/W3013782532, https://openalex.org/W2947733401, https://openalex.org/W3018302085, https://openalex.org/W4205432032, https://openalex.org/W4200598925, https://openalex.org/W3036040029, https://openalex.org/W4220967291, https://openalex.org/W2913222812, https://openalex.org/W2520371582, https://openalex.org/W2980702473, https://openalex.org/W4214580562, https://openalex.org/W2973751003, https://openalex.org/W3007444348, https://openalex.org/W3187038914, https://openalex.org/W3211740276, https://openalex.org/W4205774303, https://openalex.org/W3205163868, https://openalex.org/W4233712071, https://openalex.org/W2964338404 |
| referenced_works_count | 43 |
| abstract_inverted_index.2 | 202 |
| abstract_inverted_index.A | 261 |
| abstract_inverted_index.a | 139, 170, 217, 283, 295 |
| abstract_inverted_index.CR | 306, 321 |
| abstract_inverted_index.In | 97, 169 |
| abstract_inverted_index.SS | 265, 344 |
| abstract_inverted_index.To | 335 |
| abstract_inverted_index.as | 117, 173, 210, 294 |
| abstract_inverted_index.be | 301 |
| abstract_inverted_index.by | 132, 154, 189 |
| abstract_inverted_index.in | 51, 73, 212, 258, 291, 303, 330, 371, 384 |
| abstract_inverted_index.is | 71, 197, 278, 281 |
| abstract_inverted_index.of | 42, 53, 82, 187, 206, 241, 264, 286, 315, 320, 341 |
| abstract_inverted_index.on | 85, 192, 276, 366 |
| abstract_inverted_index.or | 298 |
| abstract_inverted_index.to | 6, 45, 77, 119, 158, 166, 175, 199, 224, 349, 355 |
| abstract_inverted_index.up | 337 |
| abstract_inverted_index.we | 374 |
| abstract_inverted_index.CR, | 277 |
| abstract_inverted_index.IoT | 269, 297 |
| abstract_inverted_index.SNR | 196 |
| abstract_inverted_index.SUs | 188 |
| abstract_inverted_index.The | 30, 67, 318 |
| abstract_inverted_index.WSN | 299 |
| abstract_inverted_index.and | 58, 88, 106, 231, 253, 270, 312, 325, 360, 368, 381, 390 |
| abstract_inverted_index.any | 46, 62 |
| abstract_inverted_index.are | 110, 333 |
| abstract_inverted_index.dB, | 203 |
| abstract_inverted_index.for | 14, 112, 228, 267, 322, 363, 387 |
| abstract_inverted_index.has | 216 |
| abstract_inverted_index.its | 86, 327 |
| abstract_inverted_index.low | 218 |
| abstract_inverted_index.may | 300 |
| abstract_inverted_index.new | 148 |
| abstract_inverted_index.the | 8, 79, 89, 120, 124, 129, 134, 147, 163, 176, 179, 183, 195, 204, 213, 232, 239, 242, 244, 268, 287, 305, 313, 339, 353, 376 |
| abstract_inverted_index.use | 319 |
| abstract_inverted_index.ICCA | 69, 126, 149, 180, 215, 246 |
| abstract_inverted_index.Many | 0 |
| abstract_inverted_index.When | 194 |
| abstract_inverted_index.afar | 326 |
| abstract_inverted_index.all. | 237 |
| abstract_inverted_index.also | 282 |
| abstract_inverted_index.been | 4 |
| abstract_inverted_index.both | 274 |
| abstract_inverted_index.data | 311 |
| abstract_inverted_index.find | 78 |
| abstract_inverted_index.from | 26 |
| abstract_inverted_index.give | 346 |
| abstract_inverted_index.have | 3 |
| abstract_inverted_index.into | 138 |
| abstract_inverted_index.like | 352 |
| abstract_inverted_index.many | 100 |
| abstract_inverted_index.most | 9, 90, 288 |
| abstract_inverted_index.node | 152, 185 |
| abstract_inverted_index.over | 20 |
| abstract_inverted_index.rate | 221 |
| abstract_inverted_index.seen | 211 |
| abstract_inverted_index.stay | 336 |
| abstract_inverted_index.than | 61 |
| abstract_inverted_index.that | 146 |
| abstract_inverted_index.them | 236 |
| abstract_inverted_index.this | 74, 98 |
| abstract_inverted_index.time | 60 |
| abstract_inverted_index.ways | 160 |
| abstract_inverted_index.when | 161, 222 |
| abstract_inverted_index.with | 308, 338 |
| abstract_inverted_index.(PUs) | 109 |
| abstract_inverted_index.(SUs) | 105 |
| abstract_inverted_index.24.23 | 190 |
| abstract_inverted_index.9.646 | 155 |
| abstract_inverted_index.Based | 365 |
| abstract_inverted_index.There | 280 |
| abstract_inverted_index.alarm | 220 |
| abstract_inverted_index.based | 84, 275 |
| abstract_inverted_index.below | 201 |
| abstract_inverted_index.false | 219 |
| abstract_inverted_index.fifth | 323 |
| abstract_inverted_index.lower | 15 |
| abstract_inverted_index.mode, | 12 |
| abstract_inverted_index.novel | 164 |
| abstract_inverted_index.other | 47, 63, 225 |
| abstract_inverted_index.paths | 380 |
| abstract_inverted_index.power | 16, 56, 153, 186 |
| abstract_inverted_index.prior | 177 |
| abstract_inverted_index.radio | 389 |
| abstract_inverted_index.speed | 131 |
| abstract_inverted_index.spots | 383 |
| abstract_inverted_index.study | 76, 379 |
| abstract_inverted_index.terms | 52 |
| abstract_inverted_index.users | 28, 104, 108 |
| abstract_inverted_index.vein, | 172 |
| abstract_inverted_index.while | 23 |
| abstract_inverted_index.(ICCA) | 35 |
| abstract_inverted_index.(PUs). | 29 |
| abstract_inverted_index.across | 40 |
| abstract_inverted_index.chosen | 102 |
| abstract_inverted_index.direct | 229 |
| abstract_inverted_index.during | 18 |
| abstract_inverted_index.future | 314 |
| abstract_inverted_index.groups | 41 |
| abstract_inverted_index.method | 48, 64, 234 |
| abstract_inverted_index.places | 362 |
| abstract_inverted_index.recent | 289 |
| abstract_inverted_index.remain | 350 |
| abstract_inverted_index.sensor | 272 |
| abstract_inverted_index.should | 345 |
| abstract_inverted_index.signal | 385 |
| abstract_inverted_index.single | 140 |
| abstract_inverted_index.values | 200 |
| abstract_inverted_index.average | 184 |
| abstract_inverted_index.created | 5 |
| abstract_inverted_index.crucial | 377 |
| abstract_inverted_index.current | 121 |
| abstract_inverted_index.feeding | 304 |
| abstract_inverted_index.figure. | 214 |
| abstract_inverted_index.matched | 223 |
| abstract_inverted_index.methods | 370 |
| abstract_inverted_index.network | 255 |
| abstract_inverted_index.numbers | 81 |
| abstract_inverted_index.optimal | 80 |
| abstract_inverted_index.percent | 156, 191 |
| abstract_inverted_index.present | 367 |
| abstract_inverted_index.primary | 27, 107 |
| abstract_inverted_index.reduced | 151, 182 |
| abstract_inverted_index.results | 144 |
| abstract_inverted_index.sensing | 39, 54, 94, 293, 310 |
| abstract_inverted_index.shorter | 21 |
| abstract_inverted_index.similar | 171 |
| abstract_inverted_index.various | 357 |
| abstract_inverted_index.allowing | 13 |
| abstract_inverted_index.average. | 193 |
| abstract_inverted_index.capacity | 256, 354 |
| abstract_inverted_index.channel. | 142 |
| abstract_inverted_index.channels | 359 |
| abstract_inverted_index.clusters | 83 |
| abstract_inverted_index.compared | 44, 118, 157, 174 |
| abstract_inverted_index.detailed | 262 |
| abstract_inverted_index.employed | 72 |
| abstract_inverted_index.enhanced | 128 |
| abstract_inverted_index.features | 348 |
| abstract_inverted_index.findings | 240 |
| abstract_inverted_index.improved | 31 |
| abstract_inverted_index.improves | 208 |
| abstract_inverted_index.networks | 307 |
| abstract_inverted_index.performs | 36 |
| abstract_inverted_index.proposed | 68, 125, 233, 245 |
| abstract_inverted_index.randomly | 101 |
| abstract_inverted_index.research | 75 |
| abstract_inverted_index.revealed | 145 |
| abstract_inverted_index.savings, | 57 |
| abstract_inverted_index.sensing. | 317 |
| abstract_inverted_index.spectrum | 38, 292, 309, 316 |
| abstract_inverted_index.superior | 37 |
| abstract_inverted_index.thorough | 284 |
| abstract_inverted_index.upcoming | 378 |
| abstract_inverted_index.wireless | 259, 271, 372 |
| abstract_inverted_index.Following | 238 |
| abstract_inverted_index.addresses | 249 |
| abstract_inverted_index.algorithm | 34, 70, 127, 150, 165, 181 |
| abstract_inverted_index.available | 50, 358 |
| abstract_inverted_index.clustered | 136 |
| abstract_inverted_index.cognitive | 388 |
| abstract_inverted_index.comparing | 162 |
| abstract_inverted_index.currently | 49, 65 |
| abstract_inverted_index.decreased | 198 |
| abstract_inverted_index.detection | 207 |
| abstract_inverted_index.determine | 7 |
| abstract_inverted_index.distances | 22 |
| abstract_inverted_index.essential | 302 |
| abstract_inverted_index.facility. | 296 |
| abstract_inverted_index.frequency | 331 |
| abstract_inverted_index.highlight | 375 |
| abstract_inverted_index.multiuser | 135 |
| abstract_inverted_index.networks, | 273 |
| abstract_inverted_index.networks. | 260 |
| abstract_inverted_index.optimizes | 254 |
| abstract_inverted_index.potential | 113, 328, 391 |
| abstract_inverted_index.provided. | 279 |
| abstract_inverted_index.research, | 99 |
| abstract_inverted_index.secondary | 103 |
| abstract_inverted_index.solutions | 392 |
| abstract_inverted_index.technique | 95, 247 |
| abstract_inverted_index.(SS‐CR). | 393 |
| abstract_inverted_index.Therefore, | 116 |
| abstract_inverted_index.accessible | 361 |
| abstract_inverted_index.additional | 347 |
| abstract_inverted_index.algorithms | 2, 227 |
| abstract_inverted_index.allocation | 332 |
| abstract_inverted_index.available. | 66, 96 |
| abstract_inverted_index.clustering | 33 |
| abstract_inverted_index.detection, | 230 |
| abstract_inverted_index.difficulty | 382 |
| abstract_inverted_index.discussed. | 334 |
| abstract_inverted_index.discussion | 263, 285 |
| abstract_inverted_index.generation | 324 |
| abstract_inverted_index.likelihood | 205 |
| abstract_inverted_index.minimising | 24 |
| abstract_inverted_index.multimodal | 250 |
| abstract_inverted_index.multiusers | 43 |
| abstract_inverted_index.processing | 386 |
| abstract_inverted_index.advancement | 340 |
| abstract_inverted_index.application | 329 |
| abstract_inverted_index.approaches. | 168 |
| abstract_inverted_index.consumption | 17 |
| abstract_inverted_index.convergence | 59, 130 |
| abstract_inverted_index.cooperative | 32 |
| abstract_inverted_index.distributed | 92 |
| abstract_inverted_index.effectively | 248 |
| abstract_inverted_index.inaccuracy, | 55 |
| abstract_inverted_index.integrating | 133 |
| abstract_inverted_index.investigate | 356 |
| abstract_inverted_index.outperforms | 235 |
| abstract_inverted_index.performance | 257 |
| abstract_inverted_index.prospective | 369 |
| abstract_inverted_index.strategies, | 123 |
| abstract_inverted_index.technology, | 343 |
| abstract_inverted_index.traditional | 159 |
| abstract_inverted_index.Experimental | 143 |
| abstract_inverted_index.advancements | 290 |
| abstract_inverted_index.applications | 266 |
| abstract_inverted_index.competitive, | 351 |
| abstract_inverted_index.connectivity | 87 |
| abstract_inverted_index.conventional | 167 |
| abstract_inverted_index.difficulties | 252 |
| abstract_inverted_index.interference | 25 |
| abstract_inverted_index.investigated | 111 |
| abstract_inverted_index.optimization | 1, 122, 226, 251 |
| abstract_inverted_index.simulations, | 243 |
| abstract_inverted_index.transmission | 11, 19 |
| abstract_inverted_index.communication | 137, 141, 342 |
| abstract_inverted_index.dramatically, | 209 |
| abstract_inverted_index.transmission. | 364 |
| abstract_inverted_index.implementation | 114 |
| abstract_inverted_index.methodologies, | 178 |
| abstract_inverted_index.opportunities. | 115 |
| abstract_inverted_index.cluster‐based | 93 |
| abstract_inverted_index.communications, | 373 |
| abstract_inverted_index.energy‐efficient | 10, 91 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5006293953 |
| countries_distinct_count | 6 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I75357094 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.8999999761581421 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.84303362 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |