Assessment of Effective Roughness Parameters for Simulating Sentinel-1A Observation and Retrieving Soil Moisture over Sparsely Vegetated Field Article Swipe
The variability of surface roughness may lead to relatively large dynamic of backscatter coefficient observed by the synthetic aperture radar (SAR), which complicates the soil moisture (SM) retrieval process based on active remote sensing. The effective roughness parameters are commonly used for parameterizing the soil scattering models, the values of which are often assumed to be constant during different study periods for the same site. This paper investigates the reasonableness of this hypothesis from the perspective of backscatter coefficient simulation and SM retrieval using high resolution SAR data. Three years of Sentinel-1A data from 2016 to 2018 were collected over a sparsely vegetated field within the REMEDHUS SM monitoring network. The advanced integral equation model (AIEM) and Dobson dielectric mixing model were combined for optimizing the effective roughness parameters, as well as simulating the backscatter coefficient and retrieving the SM. The effective roughness parameters were optimized at different temporal periods, such as 2016, 2017, 2018, 2016 + 2017, 2017 + 2018, and 2016 + 2017 + 2018, to analyze their temporal dynamics. It was found that: (1) the effective roughness parameters optimized at different temporal periods are very close to each other; (2) the simulated backscatter from AIEM is consistent with Sentinel-1A observation with root mean square errors (RMSEs) between 1.133 and 1.163 dB and correlation coefficient ® value equals to 0.616; (3) the seasonal dynamics ofin situ SM is well-captured by the retrieved SM with R values floating at 0.685 and RMSEs ranging from 0.049 to 0.052 m3/m3; and (4) inverse of the AIEM with the implementation of effective roughness parameters achieves better performance for SM retrieval than the change detection method. These findings demonstrate that the assumption on the constant effective roughness parameters during the study period of at least three years is reasonable.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs14236020
- https://www.mdpi.com/2072-4292/14/23/6020/pdf?version=1669628938
- OA Status
- gold
- Cited By
- 4
- References
- 60
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4310179623
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4310179623Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs14236020Digital Object Identifier
- Title
-
Assessment of Effective Roughness Parameters for Simulating Sentinel-1A Observation and Retrieving Soil Moisture over Sparsely Vegetated FieldWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-28Full publication date if available
- Authors
-
Xiaojing WuList of authors in order
- Landing page
-
https://doi.org/10.3390/rs14236020Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/14/23/6020/pdf?version=1669628938Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/14/23/6020/pdf?version=1669628938Direct OA link when available
- Concepts
-
Backscatter (email), Remote sensing, Environmental science, Surface roughness, Synthetic aperture radar, Surface finish, Root mean square, Water content, Mean squared error, Correlation coefficient, Scattering, Soil science, Materials science, Geology, Optics, Computer science, Physics, Mathematics, Statistics, Geotechnical engineering, Wireless, Telecommunications, Composite material, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
60Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4310179623 |
|---|---|
| doi | https://doi.org/10.3390/rs14236020 |
| ids.doi | https://doi.org/10.3390/rs14236020 |
| ids.openalex | https://openalex.org/W4310179623 |
| fwci | 0.39313747 |
| type | article |
| title | Assessment of Effective Roughness Parameters for Simulating Sentinel-1A Observation and Retrieving Soil Moisture over Sparsely Vegetated Field |
| biblio.issue | 23 |
| biblio.volume | 14 |
| biblio.last_page | 6020 |
| biblio.first_page | 6020 |
| topics[0].id | https://openalex.org/T11312 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Soil Moisture and Remote Sensing |
| topics[1].id | https://openalex.org/T11234 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.998199999332428 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1902 |
| topics[1].subfield.display_name | Atmospheric Science |
| topics[1].display_name | Precipitation Measurement and Analysis |
| topics[2].id | https://openalex.org/T10716 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9970999956130981 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Soil and Unsaturated Flow |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C30354325 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6820099949836731 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q204667 |
| concepts[0].display_name | Backscatter (email) |
| concepts[1].id | https://openalex.org/C62649853 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6799787878990173 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[1].display_name | Remote sensing |
| concepts[2].id | https://openalex.org/C39432304 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6377806067466736 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[2].display_name | Environmental science |
| concepts[3].id | https://openalex.org/C107365816 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6029509902000427 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q114817 |
| concepts[3].display_name | Surface roughness |
| concepts[4].id | https://openalex.org/C87360688 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5411310791969299 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q740686 |
| concepts[4].display_name | Synthetic aperture radar |
| concepts[5].id | https://openalex.org/C71039073 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5146230459213257 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3439090 |
| concepts[5].display_name | Surface finish |
| concepts[6].id | https://openalex.org/C71907059 |
| concepts[6].level | 2 |
| concepts[6].score | 0.47003525495529175 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q223323 |
| concepts[6].display_name | Root mean square |
| concepts[7].id | https://openalex.org/C24939127 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4337444305419922 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q373499 |
| concepts[7].display_name | Water content |
| concepts[8].id | https://openalex.org/C139945424 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4289487898349762 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[8].display_name | Mean squared error |
| concepts[9].id | https://openalex.org/C2780092901 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4264181852340698 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3433612 |
| concepts[9].display_name | Correlation coefficient |
| concepts[10].id | https://openalex.org/C191486275 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4141947627067566 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q210028 |
| concepts[10].display_name | Scattering |
| concepts[11].id | https://openalex.org/C159390177 |
| concepts[11].level | 1 |
| concepts[11].score | 0.33977243304252625 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9161265 |
| concepts[11].display_name | Soil science |
| concepts[12].id | https://openalex.org/C192562407 |
| concepts[12].level | 0 |
| concepts[12].score | 0.2636980712413788 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[12].display_name | Materials science |
| concepts[13].id | https://openalex.org/C127313418 |
| concepts[13].level | 0 |
| concepts[13].score | 0.2512917220592499 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[13].display_name | Geology |
| concepts[14].id | https://openalex.org/C120665830 |
| concepts[14].level | 1 |
| concepts[14].score | 0.1683618724346161 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[14].display_name | Optics |
| concepts[15].id | https://openalex.org/C41008148 |
| concepts[15].level | 0 |
| concepts[15].score | 0.1304047703742981 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[15].display_name | Computer science |
| concepts[16].id | https://openalex.org/C121332964 |
| concepts[16].level | 0 |
| concepts[16].score | 0.11640560626983643 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[16].display_name | Physics |
| concepts[17].id | https://openalex.org/C33923547 |
| concepts[17].level | 0 |
| concepts[17].score | 0.07504099607467651 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[17].display_name | Mathematics |
| concepts[18].id | https://openalex.org/C105795698 |
| concepts[18].level | 1 |
| concepts[18].score | 0.07274550199508667 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[18].display_name | Statistics |
| concepts[19].id | https://openalex.org/C187320778 |
| concepts[19].level | 1 |
| concepts[19].score | 0.06518688797950745 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q1349130 |
| concepts[19].display_name | Geotechnical engineering |
| concepts[20].id | https://openalex.org/C555944384 |
| concepts[20].level | 2 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q249 |
| concepts[20].display_name | Wireless |
| concepts[21].id | https://openalex.org/C76155785 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[21].display_name | Telecommunications |
| concepts[22].id | https://openalex.org/C159985019 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[22].display_name | Composite material |
| concepts[23].id | https://openalex.org/C62520636 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[23].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/backscatter |
| keywords[0].score | 0.6820099949836731 |
| keywords[0].display_name | Backscatter (email) |
| keywords[1].id | https://openalex.org/keywords/remote-sensing |
| keywords[1].score | 0.6799787878990173 |
| keywords[1].display_name | Remote sensing |
| keywords[2].id | https://openalex.org/keywords/environmental-science |
| keywords[2].score | 0.6377806067466736 |
| keywords[2].display_name | Environmental science |
| keywords[3].id | https://openalex.org/keywords/surface-roughness |
| keywords[3].score | 0.6029509902000427 |
| keywords[3].display_name | Surface roughness |
| keywords[4].id | https://openalex.org/keywords/synthetic-aperture-radar |
| keywords[4].score | 0.5411310791969299 |
| keywords[4].display_name | Synthetic aperture radar |
| keywords[5].id | https://openalex.org/keywords/surface-finish |
| keywords[5].score | 0.5146230459213257 |
| keywords[5].display_name | Surface finish |
| keywords[6].id | https://openalex.org/keywords/root-mean-square |
| keywords[6].score | 0.47003525495529175 |
| keywords[6].display_name | Root mean square |
| keywords[7].id | https://openalex.org/keywords/water-content |
| keywords[7].score | 0.4337444305419922 |
| keywords[7].display_name | Water content |
| keywords[8].id | https://openalex.org/keywords/mean-squared-error |
| keywords[8].score | 0.4289487898349762 |
| keywords[8].display_name | Mean squared error |
| keywords[9].id | https://openalex.org/keywords/correlation-coefficient |
| keywords[9].score | 0.4264181852340698 |
| keywords[9].display_name | Correlation coefficient |
| keywords[10].id | https://openalex.org/keywords/scattering |
| keywords[10].score | 0.4141947627067566 |
| keywords[10].display_name | Scattering |
| keywords[11].id | https://openalex.org/keywords/soil-science |
| keywords[11].score | 0.33977243304252625 |
| keywords[11].display_name | Soil science |
| keywords[12].id | https://openalex.org/keywords/materials-science |
| keywords[12].score | 0.2636980712413788 |
| keywords[12].display_name | Materials science |
| keywords[13].id | https://openalex.org/keywords/geology |
| keywords[13].score | 0.2512917220592499 |
| keywords[13].display_name | Geology |
| keywords[14].id | https://openalex.org/keywords/optics |
| keywords[14].score | 0.1683618724346161 |
| keywords[14].display_name | Optics |
| keywords[15].id | https://openalex.org/keywords/computer-science |
| keywords[15].score | 0.1304047703742981 |
| keywords[15].display_name | Computer science |
| keywords[16].id | https://openalex.org/keywords/physics |
| keywords[16].score | 0.11640560626983643 |
| keywords[16].display_name | Physics |
| keywords[17].id | https://openalex.org/keywords/mathematics |
| keywords[17].score | 0.07504099607467651 |
| keywords[17].display_name | Mathematics |
| keywords[18].id | https://openalex.org/keywords/statistics |
| keywords[18].score | 0.07274550199508667 |
| keywords[18].display_name | Statistics |
| keywords[19].id | https://openalex.org/keywords/geotechnical-engineering |
| keywords[19].score | 0.06518688797950745 |
| keywords[19].display_name | Geotechnical engineering |
| language | en |
| locations[0].id | doi:10.3390/rs14236020 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/14/23/6020/pdf?version=1669628938 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs14236020 |
| locations[1].id | pmh:oai:doaj.org/article:d13010db5e1f4834928109b8308981ff |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 14, Iss 23, p 6020 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/d13010db5e1f4834928109b8308981ff |
| locations[2].id | pmh:oai:mdpi.com:/2072-4292/14/23/6020/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Remote Sensing; Volume 14; Issue 23; Pages: 6020 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/rs14236020 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5101628781 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8501-174X |
| authorships[0].author.display_name | Xiaojing Wu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210160793 |
| authorships[0].affiliations[0].raw_affiliation_string | Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China |
| authorships[0].institutions[0].id | https://openalex.org/I19820366 |
| authorships[0].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[0].institutions[1].id | https://openalex.org/I4210160793 |
| authorships[0].institutions[1].ror | https://ror.org/04t1cdb72 |
| authorships[0].institutions[1].type | facility |
| authorships[0].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210160793 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Institute of Geographic Sciences and Natural Resources Research |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiaojing Wu |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/14/23/6020/pdf?version=1669628938 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Assessment of Effective Roughness Parameters for Simulating Sentinel-1A Observation and Retrieving Soil Moisture over Sparsely Vegetated Field |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11312 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Soil Moisture and Remote Sensing |
| related_works | https://openalex.org/W2102148524, https://openalex.org/W1984559991, https://openalex.org/W1799242668, https://openalex.org/W2502358642, https://openalex.org/W3165883639, https://openalex.org/W1847813119, https://openalex.org/W2068956457, https://openalex.org/W2005239049, https://openalex.org/W4382982879, https://openalex.org/W4311044000 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/rs14236020 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/14/23/6020/pdf?version=1669628938 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs14236020 |
| primary_location.id | doi:10.3390/rs14236020 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/14/23/6020/pdf?version=1669628938 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs14236020 |
| publication_date | 2022-11-28 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2046429644, https://openalex.org/W2028979033, https://openalex.org/W2118583869, https://openalex.org/W1570698328, https://openalex.org/W1997512381, https://openalex.org/W2808139181, https://openalex.org/W1966035399, https://openalex.org/W1977473269, https://openalex.org/W2132754479, https://openalex.org/W3093061945, https://openalex.org/W2150956979, https://openalex.org/W2792273908, https://openalex.org/W2752871607, https://openalex.org/W6798261001, https://openalex.org/W2050310403, https://openalex.org/W2058232479, https://openalex.org/W2907323557, https://openalex.org/W2736290716, https://openalex.org/W3045288728, https://openalex.org/W2998199582, https://openalex.org/W3177208529, https://openalex.org/W2138149909, https://openalex.org/W2109898366, https://openalex.org/W2126835024, https://openalex.org/W2114569030, https://openalex.org/W2146177950, https://openalex.org/W2171006361, https://openalex.org/W2141348340, https://openalex.org/W1995589218, https://openalex.org/W2065451693, https://openalex.org/W2621673493, https://openalex.org/W3090538909, https://openalex.org/W2117466868, https://openalex.org/W2008780751, https://openalex.org/W2084952127, https://openalex.org/W1963920546, https://openalex.org/W2139736890, https://openalex.org/W2121857067, https://openalex.org/W2179499151, https://openalex.org/W2989344762, https://openalex.org/W3088497475, https://openalex.org/W2950296258, https://openalex.org/W2014917534, https://openalex.org/W2063521276, https://openalex.org/W3036992217, https://openalex.org/W2008581100, https://openalex.org/W1963785404, https://openalex.org/W2082403237, https://openalex.org/W2921091564, https://openalex.org/W2083905585, https://openalex.org/W2108319416, https://openalex.org/W2995152164, https://openalex.org/W2780496495, https://openalex.org/W2059830792, https://openalex.org/W2044927495, https://openalex.org/W2562865472, https://openalex.org/W2081721247, https://openalex.org/W4306313951, https://openalex.org/W2123744475, https://openalex.org/W3178235556 |
| referenced_works_count | 60 |
| abstract_inverted_index.+ | 156, 159, 163, 165 |
| abstract_inverted_index.R | 236 |
| abstract_inverted_index.a | 100 |
| abstract_inverted_index.It | 172 |
| abstract_inverted_index.SM | 81, 107, 228, 234, 266 |
| abstract_inverted_index.as | 129, 131, 151 |
| abstract_inverted_index.at | 146, 182, 239, 290 |
| abstract_inverted_index.be | 55 |
| abstract_inverted_index.by | 15, 231 |
| abstract_inverted_index.dB | 213 |
| abstract_inverted_index.is | 198, 229, 294 |
| abstract_inverted_index.of | 2, 11, 49, 70, 76, 90, 252, 258, 289 |
| abstract_inverted_index.on | 30, 279 |
| abstract_inverted_index.to | 7, 54, 95, 167, 189, 220, 246 |
| abstract_inverted_index.® | 217 |
| abstract_inverted_index.(1) | 176 |
| abstract_inverted_index.(2) | 192 |
| abstract_inverted_index.(3) | 222 |
| abstract_inverted_index.(4) | 250 |
| abstract_inverted_index.SAR | 86 |
| abstract_inverted_index.SM. | 139 |
| abstract_inverted_index.The | 0, 34, 110, 140 |
| abstract_inverted_index.and | 80, 116, 136, 161, 211, 214, 241, 249 |
| abstract_inverted_index.are | 38, 51, 186 |
| abstract_inverted_index.for | 41, 61, 123, 265 |
| abstract_inverted_index.may | 5 |
| abstract_inverted_index.the | 16, 23, 43, 47, 62, 68, 74, 105, 125, 133, 138, 177, 193, 223, 232, 253, 256, 269, 277, 280, 286 |
| abstract_inverted_index.was | 173 |
| abstract_inverted_index.(SM) | 26 |
| abstract_inverted_index.2016 | 94, 155, 162 |
| abstract_inverted_index.2017 | 158, 164 |
| abstract_inverted_index.2018 | 96 |
| abstract_inverted_index.AIEM | 197, 254 |
| abstract_inverted_index.This | 65 |
| abstract_inverted_index.data | 92 |
| abstract_inverted_index.each | 190 |
| abstract_inverted_index.from | 73, 93, 196, 244 |
| abstract_inverted_index.high | 84 |
| abstract_inverted_index.lead | 6 |
| abstract_inverted_index.mean | 205 |
| abstract_inverted_index.ofin | 226 |
| abstract_inverted_index.over | 99 |
| abstract_inverted_index.root | 204 |
| abstract_inverted_index.same | 63 |
| abstract_inverted_index.situ | 227 |
| abstract_inverted_index.soil | 24, 44 |
| abstract_inverted_index.such | 150 |
| abstract_inverted_index.than | 268 |
| abstract_inverted_index.that | 276 |
| abstract_inverted_index.this | 71 |
| abstract_inverted_index.used | 40 |
| abstract_inverted_index.very | 187 |
| abstract_inverted_index.well | 130 |
| abstract_inverted_index.were | 97, 121, 144 |
| abstract_inverted_index.with | 200, 203, 235, 255 |
| abstract_inverted_index.0.049 | 245 |
| abstract_inverted_index.0.052 | 247 |
| abstract_inverted_index.0.685 | 240 |
| abstract_inverted_index.1.133 | 210 |
| abstract_inverted_index.1.163 | 212 |
| abstract_inverted_index.2016, | 152 |
| abstract_inverted_index.2017, | 153, 157 |
| abstract_inverted_index.2018, | 154, 160, 166 |
| abstract_inverted_index.RMSEs | 242 |
| abstract_inverted_index.These | 273 |
| abstract_inverted_index.Three | 88 |
| abstract_inverted_index.based | 29 |
| abstract_inverted_index.close | 188 |
| abstract_inverted_index.data. | 87 |
| abstract_inverted_index.field | 103 |
| abstract_inverted_index.found | 174 |
| abstract_inverted_index.large | 9 |
| abstract_inverted_index.least | 291 |
| abstract_inverted_index.model | 114, 120 |
| abstract_inverted_index.often | 52 |
| abstract_inverted_index.paper | 66 |
| abstract_inverted_index.radar | 19 |
| abstract_inverted_index.site. | 64 |
| abstract_inverted_index.study | 59, 287 |
| abstract_inverted_index.that: | 175 |
| abstract_inverted_index.their | 169 |
| abstract_inverted_index.three | 292 |
| abstract_inverted_index.using | 83 |
| abstract_inverted_index.value | 218 |
| abstract_inverted_index.which | 21, 50 |
| abstract_inverted_index.years | 89, 293 |
| abstract_inverted_index.(AIEM) | 115 |
| abstract_inverted_index.(SAR), | 20 |
| abstract_inverted_index.0.616; | 221 |
| abstract_inverted_index.Dobson | 117 |
| abstract_inverted_index.active | 31 |
| abstract_inverted_index.better | 263 |
| abstract_inverted_index.change | 270 |
| abstract_inverted_index.during | 57, 285 |
| abstract_inverted_index.equals | 219 |
| abstract_inverted_index.errors | 207 |
| abstract_inverted_index.m3/m3; | 248 |
| abstract_inverted_index.mixing | 119 |
| abstract_inverted_index.other; | 191 |
| abstract_inverted_index.period | 288 |
| abstract_inverted_index.remote | 32 |
| abstract_inverted_index.square | 206 |
| abstract_inverted_index.values | 48, 237 |
| abstract_inverted_index.within | 104 |
| abstract_inverted_index.(RMSEs) | 208 |
| abstract_inverted_index.analyze | 168 |
| abstract_inverted_index.assumed | 53 |
| abstract_inverted_index.between | 209 |
| abstract_inverted_index.dynamic | 10 |
| abstract_inverted_index.inverse | 251 |
| abstract_inverted_index.method. | 272 |
| abstract_inverted_index.models, | 46 |
| abstract_inverted_index.periods | 60, 185 |
| abstract_inverted_index.process | 28 |
| abstract_inverted_index.ranging | 243 |
| abstract_inverted_index.surface | 3 |
| abstract_inverted_index.REMEDHUS | 106 |
| abstract_inverted_index.achieves | 262 |
| abstract_inverted_index.advanced | 111 |
| abstract_inverted_index.aperture | 18 |
| abstract_inverted_index.combined | 122 |
| abstract_inverted_index.commonly | 39 |
| abstract_inverted_index.constant | 56, 281 |
| abstract_inverted_index.dynamics | 225 |
| abstract_inverted_index.equation | 113 |
| abstract_inverted_index.findings | 274 |
| abstract_inverted_index.floating | 238 |
| abstract_inverted_index.integral | 112 |
| abstract_inverted_index.moisture | 25 |
| abstract_inverted_index.network. | 109 |
| abstract_inverted_index.observed | 14 |
| abstract_inverted_index.periods, | 149 |
| abstract_inverted_index.seasonal | 224 |
| abstract_inverted_index.sensing. | 33 |
| abstract_inverted_index.sparsely | 101 |
| abstract_inverted_index.temporal | 148, 170, 184 |
| abstract_inverted_index.collected | 98 |
| abstract_inverted_index.detection | 271 |
| abstract_inverted_index.different | 58, 147, 183 |
| abstract_inverted_index.dynamics. | 171 |
| abstract_inverted_index.effective | 35, 126, 141, 178, 259, 282 |
| abstract_inverted_index.optimized | 145, 181 |
| abstract_inverted_index.retrieval | 27, 82, 267 |
| abstract_inverted_index.retrieved | 233 |
| abstract_inverted_index.roughness | 4, 36, 127, 142, 179, 260, 283 |
| abstract_inverted_index.simulated | 194 |
| abstract_inverted_index.synthetic | 17 |
| abstract_inverted_index.vegetated | 102 |
| abstract_inverted_index.assumption | 278 |
| abstract_inverted_index.consistent | 199 |
| abstract_inverted_index.dielectric | 118 |
| abstract_inverted_index.hypothesis | 72 |
| abstract_inverted_index.monitoring | 108 |
| abstract_inverted_index.optimizing | 124 |
| abstract_inverted_index.parameters | 37, 143, 180, 261, 284 |
| abstract_inverted_index.relatively | 8 |
| abstract_inverted_index.resolution | 85 |
| abstract_inverted_index.retrieving | 137 |
| abstract_inverted_index.scattering | 45 |
| abstract_inverted_index.simulating | 132 |
| abstract_inverted_index.simulation | 79 |
| abstract_inverted_index.Sentinel-1A | 91, 201 |
| abstract_inverted_index.backscatter | 12, 77, 134, 195 |
| abstract_inverted_index.coefficient | 13, 78, 135, 216 |
| abstract_inverted_index.complicates | 22 |
| abstract_inverted_index.correlation | 215 |
| abstract_inverted_index.demonstrate | 275 |
| abstract_inverted_index.observation | 202 |
| abstract_inverted_index.parameters, | 128 |
| abstract_inverted_index.performance | 264 |
| abstract_inverted_index.perspective | 75 |
| abstract_inverted_index.reasonable. | 295 |
| abstract_inverted_index.variability | 1 |
| abstract_inverted_index.investigates | 67 |
| abstract_inverted_index.well-captured | 230 |
| abstract_inverted_index.implementation | 257 |
| abstract_inverted_index.parameterizing | 42 |
| abstract_inverted_index.reasonableness | 69 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5101628781 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 1 |
| corresponding_institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210160793 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.7300000190734863 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.54906605 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |