Assessment of Intramural Segment Compression in Anomalous Coronary Arteries through Patient-Specific Finite Element Modeling Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.10559760
Rosato A, Lo Rito M, Anglese S, Ceserani V, Pascaner AF, Secchi F, Conti M. Assessment of Intramural Segment Compression in Anomalous Coronary Arteries through Patient-Specific Finite Element Modeling. Applied Sciences. 2023; 13(20):11185. https://doi.org/10.3390/app132011185 Abstract Background: Anomalous Aortic Origin of a Coronary Artery (AAOCA) is a congenital condition that can lead to ischemia and sudden cardiac death. Current diagnostic tools are unable to fully quantify the pathological behavior that occurs mainly with physical effort. Methods: Patients’ computed tomography scans and centerline-based geometric quantities were used to develop three-dimensional computer-aided design models of the main anatomical variants of AAOCA. Blood pressure ranging from rest to extreme effort was simulated through structural finite element analyses, and the pressurized geometries were analyzed to evaluate coronary lumen cross-sectional areas and variations at the different loading conditions. Results: We simulated 39 subjects, demonstrating the ability to reproduce accurately the patient-specific anatomy of different AAOCA variants and capture pathological behaviors. AAOCAs with intramural courses showed compression along the proximal segment with a caliber reduction ranging from 0.14% to 18.87% at different pressure levels. The percentage of proximal narrowing relative to the distal segment was greater than any other type of anomalous course and exceeded 50% with simulated exertion. Conclusions: The present study proposes a computational pipeline to investigate conditions not reproducible in clinical practice, providing information to support decision-making in the management of AAOCA patients.
Related Topics
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.5281/zenodo.10559760
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393659918
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393659918Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.10559760Digital Object Identifier
- Title
-
Assessment of Intramural Segment Compression in Anomalous Coronary Arteries through Patient-Specific Finite Element ModelingWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-24Full publication date if available
- Authors
-
Antonio Rosato, Mauro Lo Rito, Serena Anglese, Valentina Ceserani, Ariel Pascaner, Francesco Secchi, Michele ContiList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.10559760Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.10559760Direct OA link when available
- Concepts
-
Coronary arteries, Finite element method, Compression (physics), Cardiology, Internal medicine, Medicine, Geology, Materials science, Structural engineering, Engineering, Artery, Composite materialTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393659918 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.10559760 |
| ids.doi | https://doi.org/10.5281/zenodo.10559760 |
| ids.openalex | https://openalex.org/W4393659918 |
| fwci | |
| type | dataset |
| title | Assessment of Intramural Segment Compression in Anomalous Coronary Arteries through Patient-Specific Finite Element Modeling |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12018 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2740 |
| topics[0].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[0].display_name | Coronary Artery Anomalies |
| topics[1].id | https://openalex.org/T12342 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9610999822616577 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2746 |
| topics[1].subfield.display_name | Surgery |
| topics[1].display_name | Vascular anomalies and interventions |
| topics[2].id | https://openalex.org/T10300 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9595999717712402 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2713 |
| topics[2].subfield.display_name | Epidemiology |
| topics[2].display_name | Congenital Heart Disease Studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2778742706 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6841636896133423 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q18361829 |
| concepts[0].display_name | Coronary arteries |
| concepts[1].id | https://openalex.org/C135628077 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6380423307418823 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q220184 |
| concepts[1].display_name | Finite element method |
| concepts[2].id | https://openalex.org/C180016635 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6187365651130676 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2712821 |
| concepts[2].display_name | Compression (physics) |
| concepts[3].id | https://openalex.org/C164705383 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5062322020530701 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q10379 |
| concepts[3].display_name | Cardiology |
| concepts[4].id | https://openalex.org/C126322002 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4967568516731262 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[4].display_name | Internal medicine |
| concepts[5].id | https://openalex.org/C71924100 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3751317858695984 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[5].display_name | Medicine |
| concepts[6].id | https://openalex.org/C127313418 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3268142342567444 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[6].display_name | Geology |
| concepts[7].id | https://openalex.org/C192562407 |
| concepts[7].level | 0 |
| concepts[7].score | 0.30846458673477173 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[7].display_name | Materials science |
| concepts[8].id | https://openalex.org/C66938386 |
| concepts[8].level | 1 |
| concepts[8].score | 0.22577384114265442 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[8].display_name | Structural engineering |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.15881094336509705 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C2776820930 |
| concepts[10].level | 2 |
| concepts[10].score | 0.1569231152534485 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9655 |
| concepts[10].display_name | Artery |
| concepts[11].id | https://openalex.org/C159985019 |
| concepts[11].level | 1 |
| concepts[11].score | 0.10691076517105103 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[11].display_name | Composite material |
| keywords[0].id | https://openalex.org/keywords/coronary-arteries |
| keywords[0].score | 0.6841636896133423 |
| keywords[0].display_name | Coronary arteries |
| keywords[1].id | https://openalex.org/keywords/finite-element-method |
| keywords[1].score | 0.6380423307418823 |
| keywords[1].display_name | Finite element method |
| keywords[2].id | https://openalex.org/keywords/compression |
| keywords[2].score | 0.6187365651130676 |
| keywords[2].display_name | Compression (physics) |
| keywords[3].id | https://openalex.org/keywords/cardiology |
| keywords[3].score | 0.5062322020530701 |
| keywords[3].display_name | Cardiology |
| keywords[4].id | https://openalex.org/keywords/internal-medicine |
| keywords[4].score | 0.4967568516731262 |
| keywords[4].display_name | Internal medicine |
| keywords[5].id | https://openalex.org/keywords/medicine |
| keywords[5].score | 0.3751317858695984 |
| keywords[5].display_name | Medicine |
| keywords[6].id | https://openalex.org/keywords/geology |
| keywords[6].score | 0.3268142342567444 |
| keywords[6].display_name | Geology |
| keywords[7].id | https://openalex.org/keywords/materials-science |
| keywords[7].score | 0.30846458673477173 |
| keywords[7].display_name | Materials science |
| keywords[8].id | https://openalex.org/keywords/structural-engineering |
| keywords[8].score | 0.22577384114265442 |
| keywords[8].display_name | Structural engineering |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.15881094336509705 |
| keywords[9].display_name | Engineering |
| keywords[10].id | https://openalex.org/keywords/artery |
| keywords[10].score | 0.1569231152534485 |
| keywords[10].display_name | Artery |
| keywords[11].id | https://openalex.org/keywords/composite-material |
| keywords[11].score | 0.10691076517105103 |
| keywords[11].display_name | Composite material |
| language | en |
| locations[0].id | doi:10.5281/zenodo.10559760 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.10559760 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5101680193 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3975-913X |
| authorships[0].author.display_name | Antonio Rosato |
| authorships[0].countries | IT |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210099239 |
| authorships[0].affiliations[0].raw_affiliation_string | 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy |
| authorships[0].institutions[0].id | https://openalex.org/I4210099239 |
| authorships[0].institutions[0].ror | https://ror.org/01220jp31 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210099239, https://openalex.org/I4210153126 |
| authorships[0].institutions[0].country_code | IT |
| authorships[0].institutions[0].display_name | IRCCS Policlinico San Donato |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Antonio Rosato |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy |
| authorships[1].author.id | https://openalex.org/A5035493988 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3175-3764 |
| authorships[1].author.display_name | Mauro Lo Rito |
| authorships[1].countries | IT |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210099239 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Congenital Cardiac Surgery, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy |
| authorships[1].institutions[0].id | https://openalex.org/I4210099239 |
| authorships[1].institutions[0].ror | https://ror.org/01220jp31 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210099239, https://openalex.org/I4210153126 |
| authorships[1].institutions[0].country_code | IT |
| authorships[1].institutions[0].display_name | IRCCS Policlinico San Donato |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mauro Lo Rito |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Congenital Cardiac Surgery, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy |
| authorships[2].author.id | https://openalex.org/A5093051188 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7423-9757 |
| authorships[2].author.display_name | Serena Anglese |
| authorships[2].countries | IT |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210099239 |
| authorships[2].affiliations[0].raw_affiliation_string | 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy |
| authorships[2].institutions[0].id | https://openalex.org/I4210099239 |
| authorships[2].institutions[0].ror | https://ror.org/01220jp31 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210099239, https://openalex.org/I4210153126 |
| authorships[2].institutions[0].country_code | IT |
| authorships[2].institutions[0].display_name | IRCCS Policlinico San Donato |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Serena Anglese |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy |
| authorships[3].author.id | https://openalex.org/A5058765014 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Valentina Ceserani |
| authorships[3].countries | IT |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I25217355 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy |
| authorships[3].institutions[0].id | https://openalex.org/I25217355 |
| authorships[3].institutions[0].ror | https://ror.org/00s6t1f81 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I25217355 |
| authorships[3].institutions[0].country_code | IT |
| authorships[3].institutions[0].display_name | University of Pavia |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Valentina Ceserani |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy |
| authorships[4].author.id | https://openalex.org/A5026052361 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5236-8339 |
| authorships[4].author.display_name | Ariel Pascaner |
| authorships[4].countries | IT |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I25217355 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy |
| authorships[4].institutions[0].id | https://openalex.org/I25217355 |
| authorships[4].institutions[0].ror | https://ror.org/00s6t1f81 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I25217355 |
| authorships[4].institutions[0].country_code | IT |
| authorships[4].institutions[0].display_name | University of Pavia |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ariel Fernando Pascaner |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy |
| authorships[5].author.id | https://openalex.org/A5085694570 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0357-1808 |
| authorships[5].author.display_name | Francesco Secchi |
| authorships[5].countries | IT |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210099239 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Radiology, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I189158943 |
| authorships[5].affiliations[1].raw_affiliation_string | Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20122 Milan, Italy |
| authorships[5].institutions[0].id | https://openalex.org/I4210099239 |
| authorships[5].institutions[0].ror | https://ror.org/01220jp31 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210099239, https://openalex.org/I4210153126 |
| authorships[5].institutions[0].country_code | IT |
| authorships[5].institutions[0].display_name | IRCCS Policlinico San Donato |
| authorships[5].institutions[1].id | https://openalex.org/I189158943 |
| authorships[5].institutions[1].ror | https://ror.org/00wjc7c48 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I189158943 |
| authorships[5].institutions[1].country_code | IT |
| authorships[5].institutions[1].display_name | University of Milan |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Francesco Secchi |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20122 Milan, Italy, Department of Radiology, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy |
| authorships[6].author.id | https://openalex.org/A5069653622 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-1275-0653 |
| authorships[6].author.display_name | Michele Conti |
| authorships[6].countries | IT |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I25217355 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy |
| authorships[6].institutions[0].id | https://openalex.org/I25217355 |
| authorships[6].institutions[0].ror | https://ror.org/00s6t1f81 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I25217355 |
| authorships[6].institutions[0].country_code | IT |
| authorships[6].institutions[0].display_name | University of Pavia |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Michele Conti |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.10559760 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Assessment of Intramural Segment Compression in Anomalous Coronary Arteries through Patient-Specific Finite Element Modeling |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12018 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2740 |
| primary_topic.subfield.display_name | Pulmonary and Respiratory Medicine |
| primary_topic.display_name | Coronary Artery Anomalies |
| related_works | https://openalex.org/W4387497383, https://openalex.org/W3183948672, https://openalex.org/W3173606202, https://openalex.org/W3110381201, https://openalex.org/W2948807893, https://openalex.org/W2935909890, https://openalex.org/W2778153218, https://openalex.org/W2758277628, https://openalex.org/W1531601525, https://openalex.org/W2324615561 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5281/zenodo.10559760 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.10559760 |
| primary_location.id | doi:10.5281/zenodo.10559760 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.10559760 |
| publication_date | 2024-01-24 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 40, 45, 165, 207 |
| abstract_inverted_index.39 | 135 |
| abstract_inverted_index.A, | 1 |
| abstract_inverted_index.F, | 12 |
| abstract_inverted_index.Lo | 2 |
| abstract_inverted_index.M, | 4 |
| abstract_inverted_index.M. | 14 |
| abstract_inverted_index.S, | 6 |
| abstract_inverted_index.V, | 8 |
| abstract_inverted_index.We | 133 |
| abstract_inverted_index.at | 127, 173 |
| abstract_inverted_index.in | 20, 215, 223 |
| abstract_inverted_index.is | 44 |
| abstract_inverted_index.of | 16, 39, 91, 96, 146, 179, 193, 226 |
| abstract_inverted_index.to | 51, 62, 85, 103, 119, 140, 171, 183, 210, 220 |
| abstract_inverted_index.50% | 198 |
| abstract_inverted_index.AF, | 10 |
| abstract_inverted_index.The | 177, 203 |
| abstract_inverted_index.and | 53, 79, 113, 125, 150, 196 |
| abstract_inverted_index.any | 190 |
| abstract_inverted_index.are | 60 |
| abstract_inverted_index.can | 49 |
| abstract_inverted_index.not | 213 |
| abstract_inverted_index.the | 65, 92, 114, 128, 138, 143, 161, 184, 224 |
| abstract_inverted_index.was | 106, 187 |
| abstract_inverted_index.Rito | 3 |
| abstract_inverted_index.from | 101, 169 |
| abstract_inverted_index.lead | 50 |
| abstract_inverted_index.main | 93 |
| abstract_inverted_index.rest | 102 |
| abstract_inverted_index.than | 189 |
| abstract_inverted_index.that | 48, 68 |
| abstract_inverted_index.type | 192 |
| abstract_inverted_index.used | 84 |
| abstract_inverted_index.were | 83, 117 |
| abstract_inverted_index.with | 71, 155, 164, 199 |
| abstract_inverted_index.0.14% | 170 |
| abstract_inverted_index.2023; | 31 |
| abstract_inverted_index.AAOCA | 148, 227 |
| abstract_inverted_index.Blood | 98 |
| abstract_inverted_index.Conti | 13 |
| abstract_inverted_index.along | 160 |
| abstract_inverted_index.areas | 124 |
| abstract_inverted_index.fully | 63 |
| abstract_inverted_index.lumen | 122 |
| abstract_inverted_index.other | 191 |
| abstract_inverted_index.scans | 78 |
| abstract_inverted_index.study | 205 |
| abstract_inverted_index.tools | 59 |
| abstract_inverted_index.18.87% | 172 |
| abstract_inverted_index.AAOCA. | 97 |
| abstract_inverted_index.AAOCAs | 154 |
| abstract_inverted_index.Aortic | 37 |
| abstract_inverted_index.Artery | 42 |
| abstract_inverted_index.Finite | 26 |
| abstract_inverted_index.Origin | 38 |
| abstract_inverted_index.Rosato | 0 |
| abstract_inverted_index.Secchi | 11 |
| abstract_inverted_index.course | 195 |
| abstract_inverted_index.death. | 56 |
| abstract_inverted_index.design | 89 |
| abstract_inverted_index.distal | 185 |
| abstract_inverted_index.effort | 105 |
| abstract_inverted_index.finite | 110 |
| abstract_inverted_index.mainly | 70 |
| abstract_inverted_index.models | 90 |
| abstract_inverted_index.occurs | 69 |
| abstract_inverted_index.showed | 158 |
| abstract_inverted_index.sudden | 54 |
| abstract_inverted_index.unable | 61 |
| abstract_inverted_index.(AAOCA) | 43 |
| abstract_inverted_index.Anglese | 5 |
| abstract_inverted_index.Applied | 29 |
| abstract_inverted_index.Current | 57 |
| abstract_inverted_index.Element | 27 |
| abstract_inverted_index.Segment | 18 |
| abstract_inverted_index.ability | 139 |
| abstract_inverted_index.anatomy | 145 |
| abstract_inverted_index.caliber | 166 |
| abstract_inverted_index.capture | 151 |
| abstract_inverted_index.cardiac | 55 |
| abstract_inverted_index.courses | 157 |
| abstract_inverted_index.develop | 86 |
| abstract_inverted_index.effort. | 73 |
| abstract_inverted_index.element | 111 |
| abstract_inverted_index.extreme | 104 |
| abstract_inverted_index.greater | 188 |
| abstract_inverted_index.levels. | 176 |
| abstract_inverted_index.loading | 130 |
| abstract_inverted_index.present | 204 |
| abstract_inverted_index.ranging | 100, 168 |
| abstract_inverted_index.segment | 163, 186 |
| abstract_inverted_index.support | 221 |
| abstract_inverted_index.through | 24, 108 |
| abstract_inverted_index.Abstract | 34 |
| abstract_inverted_index.Arteries | 23 |
| abstract_inverted_index.Ceserani | 7 |
| abstract_inverted_index.Coronary | 22, 41 |
| abstract_inverted_index.Methods: | 74 |
| abstract_inverted_index.Pascaner | 9 |
| abstract_inverted_index.Results: | 132 |
| abstract_inverted_index.analyzed | 118 |
| abstract_inverted_index.behavior | 67 |
| abstract_inverted_index.clinical | 216 |
| abstract_inverted_index.computed | 76 |
| abstract_inverted_index.coronary | 121 |
| abstract_inverted_index.evaluate | 120 |
| abstract_inverted_index.exceeded | 197 |
| abstract_inverted_index.ischemia | 52 |
| abstract_inverted_index.physical | 72 |
| abstract_inverted_index.pipeline | 209 |
| abstract_inverted_index.pressure | 99, 175 |
| abstract_inverted_index.proposes | 206 |
| abstract_inverted_index.proximal | 162, 180 |
| abstract_inverted_index.quantify | 64 |
| abstract_inverted_index.relative | 182 |
| abstract_inverted_index.variants | 95, 149 |
| abstract_inverted_index.Anomalous | 21, 36 |
| abstract_inverted_index.Modeling. | 28 |
| abstract_inverted_index.Sciences. | 30 |
| abstract_inverted_index.analyses, | 112 |
| abstract_inverted_index.anomalous | 194 |
| abstract_inverted_index.condition | 47 |
| abstract_inverted_index.different | 129, 147, 174 |
| abstract_inverted_index.exertion. | 201 |
| abstract_inverted_index.geometric | 81 |
| abstract_inverted_index.narrowing | 181 |
| abstract_inverted_index.patients. | 228 |
| abstract_inverted_index.practice, | 217 |
| abstract_inverted_index.providing | 218 |
| abstract_inverted_index.reduction | 167 |
| abstract_inverted_index.reproduce | 141 |
| abstract_inverted_index.simulated | 107, 134, 200 |
| abstract_inverted_index.subjects, | 136 |
| abstract_inverted_index.Assessment | 15 |
| abstract_inverted_index.Intramural | 17 |
| abstract_inverted_index.accurately | 142 |
| abstract_inverted_index.anatomical | 94 |
| abstract_inverted_index.behaviors. | 153 |
| abstract_inverted_index.conditions | 212 |
| abstract_inverted_index.congenital | 46 |
| abstract_inverted_index.diagnostic | 58 |
| abstract_inverted_index.geometries | 116 |
| abstract_inverted_index.intramural | 156 |
| abstract_inverted_index.management | 225 |
| abstract_inverted_index.percentage | 178 |
| abstract_inverted_index.quantities | 82 |
| abstract_inverted_index.structural | 109 |
| abstract_inverted_index.tomography | 77 |
| abstract_inverted_index.variations | 126 |
| abstract_inverted_index.Background: | 35 |
| abstract_inverted_index.Compression | 19 |
| abstract_inverted_index.Patients’ | 75 |
| abstract_inverted_index.compression | 159 |
| abstract_inverted_index.conditions. | 131 |
| abstract_inverted_index.information | 219 |
| abstract_inverted_index.investigate | 211 |
| abstract_inverted_index.pressurized | 115 |
| abstract_inverted_index.Conclusions: | 202 |
| abstract_inverted_index.pathological | 66, 152 |
| abstract_inverted_index.reproducible | 214 |
| abstract_inverted_index.13(20):11185. | 32 |
| abstract_inverted_index.computational | 208 |
| abstract_inverted_index.demonstrating | 137 |
| abstract_inverted_index.computer-aided | 88 |
| abstract_inverted_index.cross-sectional | 123 |
| abstract_inverted_index.decision-making | 222 |
| abstract_inverted_index.Patient-Specific | 25 |
| abstract_inverted_index.centerline-based | 80 |
| abstract_inverted_index.patient-specific | 144 |
| abstract_inverted_index.three-dimensional | 87 |
| abstract_inverted_index.https://doi.org/10.3390/app132011185 | 33 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |