ASSESSMENT OF NEUTRAL ATMOSPHERIC DELAY PREDICTIONS BASED ON THE TEMPORAL RESOLUTION OF AN ATMOSPHERIC MODEL Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.6084/m9.figshare.11965659
In Global Navigation Satellite Systems (GNSS), the effects of neutral atmosphere in electromagnetic signal propagation impacts directly on the quality of the final estimated position, leading to errors in the metric order. Using an atmospheric model is a good strategy to minimize these errors, because it becomes possible to obtain a neutral atmospheric delay with the same spatial and temporal resolution, taking into consideration particularities of the atmosphere treated by a numerical model. The regional model of the Center for Weather Forecasting and Climate Studies (CPTEC) used in this paper has a spatial resolution of 15 km and a temporal resolution of 3 hours. Usually, the delay prediction of 3 hours is interpolated in time to GNSS applications and this can influence the quality of the values obtained in each interpolated epoch. Higher temporal resolutions can lead to lower errors in the final position. In this paper, the quality of delay predictions is evaluated for this atmospheric model with resolutions of 6 and 3 hours. The estimated delay, derived from meteorological data in the same location as the geodetic data, is considered as “truth”. The temporal resolution of 3 hours shows better results than using 6 hours, particularly for the hydrostatic component in the initial prediction period, RMSE of 1.25 cm was reduced to 0.2 cm in NEIA station.
Related Topics
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.6084/m9.figshare.11965659
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394302344
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394302344Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.6084/m9.figshare.11965659Digital Object Identifier
- Title
-
ASSESSMENT OF NEUTRAL ATMOSPHERIC DELAY PREDICTIONS BASED ON THE TEMPORAL RESOLUTION OF AN ATMOSPHERIC MODELWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-01Full publication date if available
- Authors
-
Tayná Aparecida Ferreira Gouveia, Luiz Fernando Sapucci, João Francisco Galera Monico, Daniele Barrocá Marra AlvesList of authors in order
- Landing page
-
https://doi.org/10.6084/m9.figshare.11965659Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.6084/m9.figshare.11965659Direct OA link when available
- Concepts
-
Environmental science, Atmospheric sciences, Atmospheric model, Atmospheric models, Meteorology, Atmosphere (unit), Geography, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394302344 |
|---|---|
| doi | https://doi.org/10.6084/m9.figshare.11965659 |
| ids.doi | https://doi.org/10.6084/m9.figshare.11965659 |
| ids.openalex | https://openalex.org/W4394302344 |
| fwci | |
| type | dataset |
| title | ASSESSMENT OF NEUTRAL ATMOSPHERIC DELAY PREDICTIONS BASED ON THE TEMPORAL RESOLUTION OF AN ATMOSPHERIC MODEL |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10466 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9693999886512756 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1902 |
| topics[0].subfield.display_name | Atmospheric Science |
| topics[0].display_name | Meteorological Phenomena and Simulations |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C39432304 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5703100562095642 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[0].display_name | Environmental science |
| concepts[1].id | https://openalex.org/C91586092 |
| concepts[1].level | 1 |
| concepts[1].score | 0.48345765471458435 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q757520 |
| concepts[1].display_name | Atmospheric sciences |
| concepts[2].id | https://openalex.org/C118365302 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4507184624671936 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q4817115 |
| concepts[2].display_name | Atmospheric model |
| concepts[3].id | https://openalex.org/C62279395 |
| concepts[3].level | 3 |
| concepts[3].score | 0.4300580620765686 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q4817115 |
| concepts[3].display_name | Atmospheric models |
| concepts[4].id | https://openalex.org/C153294291 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3190159201622009 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[4].display_name | Meteorology |
| concepts[5].id | https://openalex.org/C65440619 |
| concepts[5].level | 2 |
| concepts[5].score | 0.31865283846855164 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q177974 |
| concepts[5].display_name | Atmosphere (unit) |
| concepts[6].id | https://openalex.org/C205649164 |
| concepts[6].level | 0 |
| concepts[6].score | 0.17798620462417603 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[6].display_name | Geography |
| concepts[7].id | https://openalex.org/C121332964 |
| concepts[7].level | 0 |
| concepts[7].score | 0.13971886038780212 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[7].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/environmental-science |
| keywords[0].score | 0.5703100562095642 |
| keywords[0].display_name | Environmental science |
| keywords[1].id | https://openalex.org/keywords/atmospheric-sciences |
| keywords[1].score | 0.48345765471458435 |
| keywords[1].display_name | Atmospheric sciences |
| keywords[2].id | https://openalex.org/keywords/atmospheric-model |
| keywords[2].score | 0.4507184624671936 |
| keywords[2].display_name | Atmospheric model |
| keywords[3].id | https://openalex.org/keywords/atmospheric-models |
| keywords[3].score | 0.4300580620765686 |
| keywords[3].display_name | Atmospheric models |
| keywords[4].id | https://openalex.org/keywords/meteorology |
| keywords[4].score | 0.3190159201622009 |
| keywords[4].display_name | Meteorology |
| keywords[5].id | https://openalex.org/keywords/atmosphere |
| keywords[5].score | 0.31865283846855164 |
| keywords[5].display_name | Atmosphere (unit) |
| keywords[6].id | https://openalex.org/keywords/geography |
| keywords[6].score | 0.17798620462417603 |
| keywords[6].display_name | Geography |
| keywords[7].id | https://openalex.org/keywords/physics |
| keywords[7].score | 0.13971886038780212 |
| keywords[7].display_name | Physics |
| language | en |
| locations[0].id | doi:10.6084/m9.figshare.11965659 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.6084/m9.figshare.11965659 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5063435313 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1140-752X |
| authorships[0].author.display_name | Tayná Aparecida Ferreira Gouveia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tayná Aparecida Ferreira Gouveia |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5071794597 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8420-8033 |
| authorships[1].author.display_name | Luiz Fernando Sapucci |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Luiz Fernando Sapucci |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5017122473 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4101-9261 |
| authorships[2].author.display_name | João Francisco Galera Monico |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | João Francisco Galera Monico |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5042557062 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9033-8499 |
| authorships[3].author.display_name | Daniele Barrocá Marra Alves |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Daniele Barroca Marra Alves |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.6084/m9.figshare.11965659 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | ASSESSMENT OF NEUTRAL ATMOSPHERIC DELAY PREDICTIONS BASED ON THE TEMPORAL RESOLUTION OF AN ATMOSPHERIC MODEL |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10466 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9693999886512756 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1902 |
| primary_topic.subfield.display_name | Atmospheric Science |
| primary_topic.display_name | Meteorological Phenomena and Simulations |
| related_works | https://openalex.org/W4200000791, https://openalex.org/W2901562756, https://openalex.org/W4283643440, https://openalex.org/W3172601739, https://openalex.org/W2079948802, https://openalex.org/W4361280632, https://openalex.org/W4200006094, https://openalex.org/W3105609830, https://openalex.org/W1985320441, https://openalex.org/W3089935139 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.6084/m9.figshare.11965659 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.6084/m9.figshare.11965659 |
| primary_location.id | doi:10.6084/m9.figshare.11965659 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.6084/m9.figshare.11965659 |
| publication_date | 2020-01-01 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.3 | 103, 110, 164, 189 |
| abstract_inverted_index.6 | 162, 196 |
| abstract_inverted_index.a | 38, 51, 71, 92, 99 |
| abstract_inverted_index.15 | 96 |
| abstract_inverted_index.In | 1, 145 |
| abstract_inverted_index.an | 34 |
| abstract_inverted_index.as | 177, 183 |
| abstract_inverted_index.by | 70 |
| abstract_inverted_index.cm | 211, 216 |
| abstract_inverted_index.in | 12, 29, 88, 114, 129, 141, 173, 203, 217 |
| abstract_inverted_index.is | 37, 112, 153, 181 |
| abstract_inverted_index.it | 46 |
| abstract_inverted_index.km | 97 |
| abstract_inverted_index.of | 9, 21, 66, 77, 95, 102, 109, 125, 150, 161, 188, 209 |
| abstract_inverted_index.on | 18 |
| abstract_inverted_index.to | 27, 41, 49, 116, 138, 214 |
| abstract_inverted_index.0.2 | 215 |
| abstract_inverted_index.The | 74, 166, 185 |
| abstract_inverted_index.and | 59, 83, 98, 119, 163 |
| abstract_inverted_index.can | 121, 136 |
| abstract_inverted_index.for | 80, 155, 199 |
| abstract_inverted_index.has | 91 |
| abstract_inverted_index.the | 7, 19, 22, 30, 56, 67, 78, 106, 123, 126, 142, 148, 174, 178, 200, 204 |
| abstract_inverted_index.was | 212 |
| abstract_inverted_index.1.25 | 210 |
| abstract_inverted_index.GNSS | 117 |
| abstract_inverted_index.NEIA | 218 |
| abstract_inverted_index.RMSE | 208 |
| abstract_inverted_index.data | 172 |
| abstract_inverted_index.each | 130 |
| abstract_inverted_index.from | 170 |
| abstract_inverted_index.good | 39 |
| abstract_inverted_index.into | 63 |
| abstract_inverted_index.lead | 137 |
| abstract_inverted_index.same | 57, 175 |
| abstract_inverted_index.than | 194 |
| abstract_inverted_index.this | 89, 120, 146, 156 |
| abstract_inverted_index.time | 115 |
| abstract_inverted_index.used | 87 |
| abstract_inverted_index.with | 55, 159 |
| abstract_inverted_index.Using | 33 |
| abstract_inverted_index.data, | 180 |
| abstract_inverted_index.delay | 54, 107, 151 |
| abstract_inverted_index.final | 23, 143 |
| abstract_inverted_index.hours | 111, 190 |
| abstract_inverted_index.lower | 139 |
| abstract_inverted_index.model | 36, 76, 158 |
| abstract_inverted_index.paper | 90 |
| abstract_inverted_index.shows | 191 |
| abstract_inverted_index.these | 43 |
| abstract_inverted_index.using | 195 |
| abstract_inverted_index.Center | 79 |
| abstract_inverted_index.Global | 2 |
| abstract_inverted_index.Higher | 133 |
| abstract_inverted_index.better | 192 |
| abstract_inverted_index.delay, | 168 |
| abstract_inverted_index.epoch. | 132 |
| abstract_inverted_index.errors | 28, 140 |
| abstract_inverted_index.hours, | 197 |
| abstract_inverted_index.hours. | 104, 165 |
| abstract_inverted_index.metric | 31 |
| abstract_inverted_index.model. | 73 |
| abstract_inverted_index.obtain | 50 |
| abstract_inverted_index.order. | 32 |
| abstract_inverted_index.paper, | 147 |
| abstract_inverted_index.signal | 14 |
| abstract_inverted_index.taking | 62 |
| abstract_inverted_index.values | 127 |
| abstract_inverted_index.(CPTEC) | 86 |
| abstract_inverted_index.(GNSS), | 6 |
| abstract_inverted_index.Climate | 84 |
| abstract_inverted_index.Studies | 85 |
| abstract_inverted_index.Systems | 5 |
| abstract_inverted_index.Weather | 81 |
| abstract_inverted_index.because | 45 |
| abstract_inverted_index.becomes | 47 |
| abstract_inverted_index.derived | 169 |
| abstract_inverted_index.effects | 8 |
| abstract_inverted_index.errors, | 44 |
| abstract_inverted_index.impacts | 16 |
| abstract_inverted_index.initial | 205 |
| abstract_inverted_index.leading | 26 |
| abstract_inverted_index.neutral | 10, 52 |
| abstract_inverted_index.period, | 207 |
| abstract_inverted_index.quality | 20, 124, 149 |
| abstract_inverted_index.reduced | 213 |
| abstract_inverted_index.results | 193 |
| abstract_inverted_index.spatial | 58, 93 |
| abstract_inverted_index.treated | 69 |
| abstract_inverted_index.Usually, | 105 |
| abstract_inverted_index.directly | 17 |
| abstract_inverted_index.geodetic | 179 |
| abstract_inverted_index.location | 176 |
| abstract_inverted_index.minimize | 42 |
| abstract_inverted_index.obtained | 128 |
| abstract_inverted_index.possible | 48 |
| abstract_inverted_index.regional | 75 |
| abstract_inverted_index.station. | 219 |
| abstract_inverted_index.strategy | 40 |
| abstract_inverted_index.temporal | 60, 100, 134, 186 |
| abstract_inverted_index.Abstract: | 0 |
| abstract_inverted_index.Satellite | 4 |
| abstract_inverted_index.component | 202 |
| abstract_inverted_index.estimated | 24, 167 |
| abstract_inverted_index.evaluated | 154 |
| abstract_inverted_index.influence | 122 |
| abstract_inverted_index.numerical | 72 |
| abstract_inverted_index.position, | 25 |
| abstract_inverted_index.position. | 144 |
| abstract_inverted_index.Navigation | 3 |
| abstract_inverted_index.atmosphere | 11, 68 |
| abstract_inverted_index.considered | 182 |
| abstract_inverted_index.prediction | 108, 206 |
| abstract_inverted_index.resolution | 94, 101, 187 |
| abstract_inverted_index.Forecasting | 82 |
| abstract_inverted_index.atmospheric | 35, 53, 157 |
| abstract_inverted_index.hydrostatic | 201 |
| abstract_inverted_index.predictions | 152 |
| abstract_inverted_index.propagation | 15 |
| abstract_inverted_index.resolution, | 61 |
| abstract_inverted_index.resolutions | 135, 160 |
| abstract_inverted_index.applications | 118 |
| abstract_inverted_index.interpolated | 113, 131 |
| abstract_inverted_index.particularly | 198 |
| abstract_inverted_index.“truth”. | 184 |
| abstract_inverted_index.consideration | 64 |
| abstract_inverted_index.meteorological | 171 |
| abstract_inverted_index.electromagnetic | 13 |
| abstract_inverted_index.particularities | 65 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |