Association Between Sugar Intake, Body Mass Index, Income, and Life Expectancy: A Global Analysis Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.20944/preprints202507.0086.v2
Background: Life expectancy is shaped by a combination of lifestyle and socioeconomic factors. While sugar consumption, body mass index (BMI), and income have been individually linked to health outcomes, their combined effects on longevity—particularly across countries with differing development levels—are less well understood. Objective: This study investigates how sugar intake, BMI, and per capita income interact to influence life expectancy across 187 countries. Methods: We conducted a cross-sectional analysis using national-level data from FAOSTAT, the World Bank, and the World Health Organization for the years 2022–2023. Pearson correlation was used to assess bivariate relationships, and multiple linear regression was employed to estimate the collective impact of BMI, sugar consumption (kg per capita/year), and income (USD) on life expectancy (years). The model was adjusted for confounding variables such as healthcare expenditure, education, and smoking prevalence. Results: Sugar intake was moderately associated with BMI (r = 0.52) and life expectancy (r = 0.50), with p value <0.05 for both with stronger relationships observed in countries with per capita income below USD 10,000. BMI also showed a moderate positive correlation with life expectancy (r = 0.49), but this association weakened—and slightly reversed—for countries with BMI greater than 27 kg/m². The regression model explained 33.9% of the variance in life expectancy (adjusted R² = 0.325), increasing to 61.6% after accounting for structural confounders. Conclusion: BMI and sugar intake are important predictors of life expectancy, with their impact shaped by income level and healthcare infrastructure. The decline in longevity above a BMI threshold of 27 kg/m² highlights a critical point for public health intervention. Integrated strategies targeting obesity, sugar intake, and structural inequities are essential for improving global health outcomes.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.20944/preprints202507.0086.v2
- https://www.preprints.org/frontend/manuscript/912517ebc4223c0373bb9738e6a91b8c/download_pub
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412095729
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412095729Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.20944/preprints202507.0086.v2Digital Object Identifier
- Title
-
Association Between Sugar Intake, Body Mass Index, Income, and Life Expectancy: A Global AnalysisWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-03Full publication date if available
- Authors
-
Kalki Rajamanickam Chandrasekaran, Arpit Srivastava, S. Ramakrishnan, Rajneesh KumarList of authors in order
- Landing page
-
https://doi.org/10.20944/preprints202507.0086.v2Publisher landing page
- PDF URL
-
https://www.preprints.org/frontend/manuscript/912517ebc4223c0373bb9738e6a91b8c/download_pubDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.preprints.org/frontend/manuscript/912517ebc4223c0373bb9738e6a91b8c/download_pubDirect OA link when available
- Concepts
-
Life expectancy, Body mass index, Index (typography), Sugar, Association (psychology), Demographic economics, Economics, Environmental health, Demography, Gerontology, Psychology, Food science, Medicine, Chemistry, Endocrinology, Sociology, Computer science, Population, World Wide Web, PsychotherapistTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412095729 |
|---|---|
| doi | https://doi.org/10.20944/preprints202507.0086.v2 |
| ids.doi | https://doi.org/10.20944/preprints202507.0086.v2 |
| ids.openalex | https://openalex.org/W4412095729 |
| fwci | 0.0 |
| type | preprint |
| title | Association Between Sugar Intake, Body Mass Index, Income, and Life Expectancy: A Global Analysis |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10866 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.6025999784469604 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2739 |
| topics[0].subfield.display_name | Public Health, Environmental and Occupational Health |
| topics[0].display_name | Nutritional Studies and Diet |
| topics[1].id | https://openalex.org/T12964 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.5142999887466431 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2712 |
| topics[1].subfield.display_name | Endocrinology, Diabetes and Metabolism |
| topics[1].display_name | Diet, Metabolism, and Disease |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C133925201 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8026806116104126 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q188419 |
| concepts[0].display_name | Life expectancy |
| concepts[1].id | https://openalex.org/C2780221984 |
| concepts[1].level | 2 |
| concepts[1].score | 0.778700590133667 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q131191 |
| concepts[1].display_name | Body mass index |
| concepts[2].id | https://openalex.org/C2777382242 |
| concepts[2].level | 2 |
| concepts[2].score | 0.615825891494751 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q6017816 |
| concepts[2].display_name | Index (typography) |
| concepts[3].id | https://openalex.org/C2777108408 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6144906878471375 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11002 |
| concepts[3].display_name | Sugar |
| concepts[4].id | https://openalex.org/C142853389 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5295537114143372 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q744778 |
| concepts[4].display_name | Association (psychology) |
| concepts[5].id | https://openalex.org/C4249254 |
| concepts[5].level | 1 |
| concepts[5].score | 0.39290767908096313 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3044431 |
| concepts[5].display_name | Demographic economics |
| concepts[6].id | https://openalex.org/C162324750 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3718215823173523 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[6].display_name | Economics |
| concepts[7].id | https://openalex.org/C99454951 |
| concepts[7].level | 1 |
| concepts[7].score | 0.36643874645233154 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q932068 |
| concepts[7].display_name | Environmental health |
| concepts[8].id | https://openalex.org/C149923435 |
| concepts[8].level | 1 |
| concepts[8].score | 0.33238744735717773 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q37732 |
| concepts[8].display_name | Demography |
| concepts[9].id | https://openalex.org/C74909509 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3228413462638855 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q10387 |
| concepts[9].display_name | Gerontology |
| concepts[10].id | https://openalex.org/C15744967 |
| concepts[10].level | 0 |
| concepts[10].score | 0.31616324186325073 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[10].display_name | Psychology |
| concepts[11].id | https://openalex.org/C31903555 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2597658634185791 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1637030 |
| concepts[11].display_name | Food science |
| concepts[12].id | https://openalex.org/C71924100 |
| concepts[12].level | 0 |
| concepts[12].score | 0.2536688446998596 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[12].display_name | Medicine |
| concepts[13].id | https://openalex.org/C185592680 |
| concepts[13].level | 0 |
| concepts[13].score | 0.1808892786502838 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[13].display_name | Chemistry |
| concepts[14].id | https://openalex.org/C134018914 |
| concepts[14].level | 1 |
| concepts[14].score | 0.1569017767906189 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q162606 |
| concepts[14].display_name | Endocrinology |
| concepts[15].id | https://openalex.org/C144024400 |
| concepts[15].level | 0 |
| concepts[15].score | 0.1524137556552887 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[15].display_name | Sociology |
| concepts[16].id | https://openalex.org/C41008148 |
| concepts[16].level | 0 |
| concepts[16].score | 0.12066590785980225 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[16].display_name | Computer science |
| concepts[17].id | https://openalex.org/C2908647359 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[17].display_name | Population |
| concepts[18].id | https://openalex.org/C136764020 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[18].display_name | World Wide Web |
| concepts[19].id | https://openalex.org/C542102704 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q183257 |
| concepts[19].display_name | Psychotherapist |
| keywords[0].id | https://openalex.org/keywords/life-expectancy |
| keywords[0].score | 0.8026806116104126 |
| keywords[0].display_name | Life expectancy |
| keywords[1].id | https://openalex.org/keywords/body-mass-index |
| keywords[1].score | 0.778700590133667 |
| keywords[1].display_name | Body mass index |
| keywords[2].id | https://openalex.org/keywords/index |
| keywords[2].score | 0.615825891494751 |
| keywords[2].display_name | Index (typography) |
| keywords[3].id | https://openalex.org/keywords/sugar |
| keywords[3].score | 0.6144906878471375 |
| keywords[3].display_name | Sugar |
| keywords[4].id | https://openalex.org/keywords/association |
| keywords[4].score | 0.5295537114143372 |
| keywords[4].display_name | Association (psychology) |
| keywords[5].id | https://openalex.org/keywords/demographic-economics |
| keywords[5].score | 0.39290767908096313 |
| keywords[5].display_name | Demographic economics |
| keywords[6].id | https://openalex.org/keywords/economics |
| keywords[6].score | 0.3718215823173523 |
| keywords[6].display_name | Economics |
| keywords[7].id | https://openalex.org/keywords/environmental-health |
| keywords[7].score | 0.36643874645233154 |
| keywords[7].display_name | Environmental health |
| keywords[8].id | https://openalex.org/keywords/demography |
| keywords[8].score | 0.33238744735717773 |
| keywords[8].display_name | Demography |
| keywords[9].id | https://openalex.org/keywords/gerontology |
| keywords[9].score | 0.3228413462638855 |
| keywords[9].display_name | Gerontology |
| keywords[10].id | https://openalex.org/keywords/psychology |
| keywords[10].score | 0.31616324186325073 |
| keywords[10].display_name | Psychology |
| keywords[11].id | https://openalex.org/keywords/food-science |
| keywords[11].score | 0.2597658634185791 |
| keywords[11].display_name | Food science |
| keywords[12].id | https://openalex.org/keywords/medicine |
| keywords[12].score | 0.2536688446998596 |
| keywords[12].display_name | Medicine |
| keywords[13].id | https://openalex.org/keywords/chemistry |
| keywords[13].score | 0.1808892786502838 |
| keywords[13].display_name | Chemistry |
| keywords[14].id | https://openalex.org/keywords/endocrinology |
| keywords[14].score | 0.1569017767906189 |
| keywords[14].display_name | Endocrinology |
| keywords[15].id | https://openalex.org/keywords/sociology |
| keywords[15].score | 0.1524137556552887 |
| keywords[15].display_name | Sociology |
| keywords[16].id | https://openalex.org/keywords/computer-science |
| keywords[16].score | 0.12066590785980225 |
| keywords[16].display_name | Computer science |
| language | en |
| locations[0].id | doi:10.20944/preprints202507.0086.v2 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S6309402219 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Preprints.org |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.preprints.org/frontend/manuscript/912517ebc4223c0373bb9738e6a91b8c/download_pub |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.20944/preprints202507.0086.v2 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5108865854 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Kalki Rajamanickam Chandrasekaran |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kalki Rajamanickam Chandrasekaran |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5073450571 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1525-5626 |
| authorships[1].author.display_name | Arpit Srivastava |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Advay Srivastava |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5072254135 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1959-7746 |
| authorships[2].author.display_name | S. Ramakrishnan |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Saraswathi Ramakrishnan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5019504988 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2269-4835 |
| authorships[3].author.display_name | Rajneesh Kumar |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Rajneesh Kumar |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.preprints.org/frontend/manuscript/912517ebc4223c0373bb9738e6a91b8c/download_pub |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Association Between Sugar Intake, Body Mass Index, Income, and Life Expectancy: A Global Analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10866 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.6025999784469604 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2739 |
| primary_topic.subfield.display_name | Public Health, Environmental and Occupational Health |
| primary_topic.display_name | Nutritional Studies and Diet |
| related_works | https://openalex.org/W16271281, https://openalex.org/W40019356, https://openalex.org/W2073743814, https://openalex.org/W2406455777, https://openalex.org/W3013519900, https://openalex.org/W2357219879, https://openalex.org/W4292066684, https://openalex.org/W2804256819, https://openalex.org/W1895899363, https://openalex.org/W2593005969 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.20944/preprints202507.0086.v2 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S6309402219 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Preprints.org |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.preprints.org/frontend/manuscript/912517ebc4223c0373bb9738e6a91b8c/download_pub |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.20944/preprints202507.0086.v2 |
| primary_location.id | doi:10.20944/preprints202507.0086.v2 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S6309402219 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Preprints.org |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.preprints.org/frontend/manuscript/912517ebc4223c0373bb9738e6a91b8c/download_pub |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.20944/preprints202507.0086.v2 |
| publication_date | 2025-07-03 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.= | 143, 149, 181, 209 |
| abstract_inverted_index.a | 6, 66, 173, 245, 252 |
| abstract_inverted_index.p | 152 |
| abstract_inverted_index.(r | 142, 148, 180 |
| abstract_inverted_index.27 | 194, 249 |
| abstract_inverted_index.We | 64 |
| abstract_inverted_index.as | 127 |
| abstract_inverted_index.by | 5, 234 |
| abstract_inverted_index.in | 161, 204, 242 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.of | 8, 105, 201, 227, 248 |
| abstract_inverted_index.on | 32, 115 |
| abstract_inverted_index.to | 26, 56, 90, 100, 212 |
| abstract_inverted_index.(kg | 109 |
| abstract_inverted_index.187 | 61 |
| abstract_inverted_index.BMI | 141, 170, 191, 220, 246 |
| abstract_inverted_index.R² | 208 |
| abstract_inverted_index.The | 119, 196, 240 |
| abstract_inverted_index.USD | 168 |
| abstract_inverted_index.and | 10, 20, 51, 77, 94, 112, 131, 145, 221, 237, 265 |
| abstract_inverted_index.are | 224, 268 |
| abstract_inverted_index.but | 183 |
| abstract_inverted_index.for | 82, 123, 155, 216, 255, 270 |
| abstract_inverted_index.how | 47 |
| abstract_inverted_index.per | 52, 110, 164 |
| abstract_inverted_index.the | 74, 78, 83, 102, 202 |
| abstract_inverted_index.was | 88, 98, 121, 137 |
| abstract_inverted_index.BMI, | 50, 106 |
| abstract_inverted_index.Life | 1 |
| abstract_inverted_index.This | 44 |
| abstract_inverted_index.also | 171 |
| abstract_inverted_index.been | 23 |
| abstract_inverted_index.body | 16 |
| abstract_inverted_index.both | 156 |
| abstract_inverted_index.data | 71 |
| abstract_inverted_index.from | 72 |
| abstract_inverted_index.have | 22 |
| abstract_inverted_index.less | 40 |
| abstract_inverted_index.life | 58, 116, 146, 178, 205, 228 |
| abstract_inverted_index.mass | 17 |
| abstract_inverted_index.such | 126 |
| abstract_inverted_index.than | 193 |
| abstract_inverted_index.this | 184 |
| abstract_inverted_index.used | 89 |
| abstract_inverted_index.well | 41 |
| abstract_inverted_index.with | 36, 140, 151, 157, 163, 177, 190, 230 |
| abstract_inverted_index.(USD) | 114 |
| abstract_inverted_index.0.52) | 144 |
| abstract_inverted_index.33.9% | 200 |
| abstract_inverted_index.61.6% | 213 |
| abstract_inverted_index.Bank, | 76 |
| abstract_inverted_index.Sugar | 135 |
| abstract_inverted_index.While | 13 |
| abstract_inverted_index.World | 75, 79 |
| abstract_inverted_index.above | 244 |
| abstract_inverted_index.after | 214 |
| abstract_inverted_index.below | 167 |
| abstract_inverted_index.index | 18 |
| abstract_inverted_index.level | 236 |
| abstract_inverted_index.model | 120, 198 |
| abstract_inverted_index.point | 254 |
| abstract_inverted_index.study | 45 |
| abstract_inverted_index.sugar | 14, 48, 107, 222, 263 |
| abstract_inverted_index.their | 29, 231 |
| abstract_inverted_index.using | 69 |
| abstract_inverted_index.value | 153 |
| abstract_inverted_index.years | 84 |
| abstract_inverted_index.(BMI), | 19 |
| abstract_inverted_index.0.49), | 182 |
| abstract_inverted_index.0.50), | 150 |
| abstract_inverted_index.Health | 80 |
| abstract_inverted_index.across | 34, 60 |
| abstract_inverted_index.assess | 91 |
| abstract_inverted_index.capita | 53, 165 |
| abstract_inverted_index.global | 272 |
| abstract_inverted_index.health | 27, 257, 273 |
| abstract_inverted_index.impact | 104, 232 |
| abstract_inverted_index.income | 21, 54, 113, 166, 235 |
| abstract_inverted_index.intake | 136, 223 |
| abstract_inverted_index.kg/m² | 250 |
| abstract_inverted_index.linear | 96 |
| abstract_inverted_index.linked | 25 |
| abstract_inverted_index.public | 256 |
| abstract_inverted_index.shaped | 4, 233 |
| abstract_inverted_index.showed | 172 |
| abstract_inverted_index.0.325), | 210 |
| abstract_inverted_index.10,000. | 169 |
| abstract_inverted_index.Pearson | 86 |
| abstract_inverted_index.decline | 241 |
| abstract_inverted_index.effects | 31 |
| abstract_inverted_index.greater | 192 |
| abstract_inverted_index.intake, | 49, 264 |
| abstract_inverted_index.kg/m². | 195 |
| abstract_inverted_index.smoking | 132 |
| abstract_inverted_index.(years). | 118 |
| abstract_inverted_index.FAOSTAT, | 73 |
| abstract_inverted_index.Methods: | 63 |
| abstract_inverted_index.Results: | 134 |
| abstract_inverted_index.adjusted | 122 |
| abstract_inverted_index.analysis | 68 |
| abstract_inverted_index.combined | 30 |
| abstract_inverted_index.critical | 253 |
| abstract_inverted_index.employed | 99 |
| abstract_inverted_index.estimate | 101 |
| abstract_inverted_index.factors. | 12 |
| abstract_inverted_index.interact | 55 |
| abstract_inverted_index.moderate | 174 |
| abstract_inverted_index.multiple | 95 |
| abstract_inverted_index.obesity, | 262 |
| abstract_inverted_index.observed | 160 |
| abstract_inverted_index.positive | 175 |
| abstract_inverted_index.slightly | 187 |
| abstract_inverted_index.stronger | 158 |
| abstract_inverted_index.variance | 203 |
| abstract_inverted_index.(adjusted | 207 |
| abstract_inverted_index.bivariate | 92 |
| abstract_inverted_index.conducted | 65 |
| abstract_inverted_index.countries | 35, 162, 189 |
| abstract_inverted_index.differing | 37 |
| abstract_inverted_index.essential | 269 |
| abstract_inverted_index.explained | 199 |
| abstract_inverted_index.important | 225 |
| abstract_inverted_index.improving | 271 |
| abstract_inverted_index.influence | 57 |
| abstract_inverted_index.lifestyle | 9 |
| abstract_inverted_index.longevity | 243 |
| abstract_inverted_index.outcomes, | 28 |
| abstract_inverted_index.outcomes. | 274 |
| abstract_inverted_index.targeting | 261 |
| abstract_inverted_index.threshold | 247 |
| abstract_inverted_index.variables | 125 |
| abstract_inverted_index.Integrated | 259 |
| abstract_inverted_index.Objective: | 43 |
| abstract_inverted_index.accounting | 215 |
| abstract_inverted_index.associated | 139 |
| abstract_inverted_index.collective | 103 |
| abstract_inverted_index.countries. | 62 |
| abstract_inverted_index.education, | 130 |
| abstract_inverted_index.expectancy | 2, 59, 117, 147, 179, 206 |
| abstract_inverted_index.healthcare | 128, 238 |
| abstract_inverted_index.highlights | 251 |
| abstract_inverted_index.increasing | 211 |
| abstract_inverted_index.inequities | 267 |
| abstract_inverted_index.moderately | 138 |
| abstract_inverted_index.predictors | 226 |
| abstract_inverted_index.regression | 97, 197 |
| abstract_inverted_index.strategies | 260 |
| abstract_inverted_index.structural | 217, 266 |
| abstract_inverted_index.Background: | 0 |
| abstract_inverted_index.Conclusion: | 219 |
| abstract_inverted_index.association | 185 |
| abstract_inverted_index.combination | 7 |
| abstract_inverted_index.confounding | 124 |
| abstract_inverted_index.consumption | 108 |
| abstract_inverted_index.correlation | 87, 176 |
| abstract_inverted_index.development | 38 |
| abstract_inverted_index.expectancy, | 229 |
| abstract_inverted_index.prevalence. | 133 |
| abstract_inverted_index.understood. | 42 |
| abstract_inverted_index.&lt;0.05 | 154 |
| abstract_inverted_index.2022–2023. | 85 |
| abstract_inverted_index.Organization | 81 |
| abstract_inverted_index.confounders. | 218 |
| abstract_inverted_index.consumption, | 15 |
| abstract_inverted_index.expenditure, | 129 |
| abstract_inverted_index.individually | 24 |
| abstract_inverted_index.investigates | 46 |
| abstract_inverted_index.levels—are | 39 |
| abstract_inverted_index.capita/year), | 111 |
| abstract_inverted_index.intervention. | 258 |
| abstract_inverted_index.relationships | 159 |
| abstract_inverted_index.socioeconomic | 11 |
| abstract_inverted_index.national-level | 70 |
| abstract_inverted_index.relationships, | 93 |
| abstract_inverted_index.reversed—for | 188 |
| abstract_inverted_index.weakened—and | 186 |
| abstract_inverted_index.cross-sectional | 67 |
| abstract_inverted_index.infrastructure. | 239 |
| abstract_inverted_index.longevity—particularly | 33 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.35369053 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |