Astronomical Knowledge Entity Extraction in Astrophysics Journal Articles via Large Language Models Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1088/1674-4527/ad3d15
Astronomical knowledge entities, such as celestial object identifiers, are crucial for literature retrieval and knowledge graph construction, and other research and applications in the field of astronomy. Traditional methods of extracting knowledge entities from texts face numerous challenging obstacles that are difficult to overcome. Consequently, there is a pressing need for improved methods to efficiently extract them. This study explores the potential of pre-trained Large Language Models (LLMs) to perform astronomical knowledge entity extraction (KEE) task from astrophysical journal articles using prompts. We propose a prompting strategy called Prompt-KEE, which includes five prompt elements, and design eight combination prompts based on them. We select four representative LLMs (Llama-2-70B, GPT-3.5, GPT-4, and Claude 2) and attempt to extract the most typical astronomical knowledge entities, celestial object identifiers and telescope names, from astronomical journal articles using these eight combination prompts. To accommodate their token limitations, we construct two data sets: the full texts and paragraph collections of 30 articles. Leveraging the eight prompts, we test on full texts with GPT-4 and Claude 2, on paragraph collections with all LLMs. The experimental results demonstrate that pre-trained LLMs show significant potential in performing KEE tasks, but their performance varies on the two data sets. Furthermore, we analyze some important factors that influence the performance of LLMs in entity extraction and provide insights for future KEE tasks in astrophysical articles using LLMs. Finally, compared to other methods of KEE, LLMs exhibit strong competitiveness in multiple aspects.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/1674-4527/ad3d15
- OA Status
- hybrid
- Cited By
- 14
- References
- 32
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394673924
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394673924Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/1674-4527/ad3d15Digital Object Identifier
- Title
-
Astronomical Knowledge Entity Extraction in Astrophysics Journal Articles via Large Language ModelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-04-10Full publication date if available
- Authors
-
Wenjuan Shao, Rui Zhang, Pengli Ji, Dongwei Fan, Yaohua Hu, Xiaoran Yan, Chenzhou Cui, Yihan Tao, Linying Mi, Lang ChenList of authors in order
- Landing page
-
https://doi.org/10.1088/1674-4527/ad3d15Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1088/1674-4527/ad3d15Direct OA link when available
- Concepts
-
Computer science, Extraction (chemistry), Natural language processing, Chemistry, ChromatographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
14Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 11, 2024: 3Per-year citation counts (last 5 years)
- References (count)
-
32Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394673924 |
|---|---|
| doi | https://doi.org/10.1088/1674-4527/ad3d15 |
| ids.doi | https://doi.org/10.1088/1674-4527/ad3d15 |
| ids.openalex | https://openalex.org/W4394673924 |
| fwci | 5.14536348 |
| type | article |
| title | Astronomical Knowledge Entity Extraction in Astrophysics Journal Articles via Large Language Models |
| biblio.issue | 6 |
| biblio.volume | 24 |
| biblio.last_page | 065012 |
| biblio.first_page | 065012 |
| topics[0].id | https://openalex.org/T13820 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9764000177383423 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | SAS software applications and methods |
| topics[1].id | https://openalex.org/T10028 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9567999839782715 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Topic Modeling |
| topics[2].id | https://openalex.org/T12016 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9239000082015991 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1710 |
| topics[2].subfield.display_name | Information Systems |
| topics[2].display_name | Web Data Mining and Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.462643027305603 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C4725764 |
| concepts[1].level | 2 |
| concepts[1].score | 0.42257165908813477 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q844704 |
| concepts[1].display_name | Extraction (chemistry) |
| concepts[2].id | https://openalex.org/C204321447 |
| concepts[2].level | 1 |
| concepts[2].score | 0.34159475564956665 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[2].display_name | Natural language processing |
| concepts[3].id | https://openalex.org/C185592680 |
| concepts[3].level | 0 |
| concepts[3].score | 0.11883315443992615 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[3].display_name | Chemistry |
| concepts[4].id | https://openalex.org/C43617362 |
| concepts[4].level | 1 |
| concepts[4].score | 0.058410048484802246 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[4].display_name | Chromatography |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.462643027305603 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/extraction |
| keywords[1].score | 0.42257165908813477 |
| keywords[1].display_name | Extraction (chemistry) |
| keywords[2].id | https://openalex.org/keywords/natural-language-processing |
| keywords[2].score | 0.34159475564956665 |
| keywords[2].display_name | Natural language processing |
| keywords[3].id | https://openalex.org/keywords/chemistry |
| keywords[3].score | 0.11883315443992615 |
| keywords[3].display_name | Chemistry |
| keywords[4].id | https://openalex.org/keywords/chromatography |
| keywords[4].score | 0.058410048484802246 |
| keywords[4].display_name | Chromatography |
| language | en |
| locations[0].id | doi:10.1088/1674-4527/ad3d15 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S174657117 |
| locations[0].source.issn | 1674-4527, 2397-6209 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1674-4527 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Research in Astronomy and Astrophysics |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Research in Astronomy and Astrophysics |
| locations[0].landing_page_url | https://doi.org/10.1088/1674-4527/ad3d15 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5102007782 |
| authorships[0].author.orcid | https://orcid.org/0009-0002-2492-6054 |
| authorships[0].author.display_name | Wenjuan Shao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210164580 |
| authorships[0].affiliations[0].raw_affiliation_string | , National Astronomical Observatory, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100101, China., beijing, 100101, CHINA |
| authorships[0].institutions[0].id | https://openalex.org/I19820366 |
| authorships[0].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[0].institutions[1].id | https://openalex.org/I4210164580 |
| authorships[0].institutions[1].ror | https://ror.org/058pyyv44 |
| authorships[0].institutions[1].type | facility |
| authorships[0].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210164580 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | National Astronomical Observatories |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wujun Shao |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | , National Astronomical Observatory, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100101, China., beijing, 100101, CHINA |
| authorships[1].author.id | https://openalex.org/A5100422164 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2835-8963 |
| authorships[1].author.display_name | Rui Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Rui Zhang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5113034655 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Pengli Ji |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Pengli Ji |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5006156667 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8669-5370 |
| authorships[3].author.display_name | Dongwei Fan |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Dongwei Fan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5068722887 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6377-4682 |
| authorships[4].author.display_name | Yaohua Hu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yaohua Hu |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5056810589 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6241-5744 |
| authorships[5].author.display_name | Xiaoran Yan |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Xiaoran Yan |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5034982419 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-7456-1826 |
| authorships[6].author.display_name | Chenzhou Cui |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Chenzhou Cui |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5111170538 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Yihan Tao |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Yihan Tao |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5104278334 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Linying Mi |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Linying Mi |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5064115237 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-2118-5601 |
| authorships[9].author.display_name | Lang Chen |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Lang Chen |
| authorships[9].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1088/1674-4527/ad3d15 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Astronomical Knowledge Entity Extraction in Astrophysics Journal Articles via Large Language Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13820 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9764000177383423 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | SAS software applications and methods |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W4391913857, https://openalex.org/W2350741829, https://openalex.org/W2530322880 |
| cited_by_count | 14 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 11 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1088/1674-4527/ad3d15 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S174657117 |
| best_oa_location.source.issn | 1674-4527, 2397-6209 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1674-4527 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Research in Astronomy and Astrophysics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Research in Astronomy and Astrophysics |
| best_oa_location.landing_page_url | https://doi.org/10.1088/1674-4527/ad3d15 |
| primary_location.id | doi:10.1088/1674-4527/ad3d15 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S174657117 |
| primary_location.source.issn | 1674-4527, 2397-6209 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1674-4527 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Research in Astronomy and Astrophysics |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Research in Astronomy and Astrophysics |
| primary_location.landing_page_url | https://doi.org/10.1088/1674-4527/ad3d15 |
| publication_date | 2024-04-10 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2912695284, https://openalex.org/W3006227201, https://openalex.org/W4386708502, https://openalex.org/W3047986031, https://openalex.org/W2067368901, https://openalex.org/W2001144908, https://openalex.org/W2805931321, https://openalex.org/W3010336026, https://openalex.org/W2972485121, https://openalex.org/W1901616594, https://openalex.org/W2887430775, https://openalex.org/W3092423752, https://openalex.org/W4400134761, https://openalex.org/W4306841593, https://openalex.org/W2070808142, https://openalex.org/W2330149175, https://openalex.org/W4304588181, https://openalex.org/W4226278401, https://openalex.org/W1967728206, https://openalex.org/W4224981496, https://openalex.org/W4303646946, https://openalex.org/W4200129460, https://openalex.org/W1980586935, https://openalex.org/W4367627405, https://openalex.org/W3019734326, https://openalex.org/W3003634485, https://openalex.org/W3172943453, https://openalex.org/W3122144522, https://openalex.org/W2996706573, https://openalex.org/W3103376819, https://openalex.org/W3104100678, https://openalex.org/W2977298342 |
| referenced_works_count | 32 |
| abstract_inverted_index.a | 48, 85 |
| abstract_inverted_index.2) | 113 |
| abstract_inverted_index.2, | 171 |
| abstract_inverted_index.30 | 156 |
| abstract_inverted_index.To | 139 |
| abstract_inverted_index.We | 83, 103 |
| abstract_inverted_index.as | 5 |
| abstract_inverted_index.in | 23, 188, 213, 223, 239 |
| abstract_inverted_index.is | 47 |
| abstract_inverted_index.of | 26, 30, 63, 155, 211, 233 |
| abstract_inverted_index.on | 101, 164, 172, 196 |
| abstract_inverted_index.to | 43, 54, 69, 116, 230 |
| abstract_inverted_index.we | 144, 162, 202 |
| abstract_inverted_index.KEE | 190, 221 |
| abstract_inverted_index.The | 178 |
| abstract_inverted_index.all | 176 |
| abstract_inverted_index.and | 14, 18, 21, 95, 111, 114, 127, 152, 169, 216 |
| abstract_inverted_index.are | 9, 41 |
| abstract_inverted_index.but | 192 |
| abstract_inverted_index.for | 11, 51, 219 |
| abstract_inverted_index.the | 24, 61, 118, 149, 159, 197, 209 |
| abstract_inverted_index.two | 146, 198 |
| abstract_inverted_index.KEE, | 234 |
| abstract_inverted_index.LLMs | 107, 184, 212, 235 |
| abstract_inverted_index.This | 58 |
| abstract_inverted_index.data | 147, 199 |
| abstract_inverted_index.face | 36 |
| abstract_inverted_index.five | 92 |
| abstract_inverted_index.four | 105 |
| abstract_inverted_index.from | 34, 77, 130 |
| abstract_inverted_index.full | 150, 165 |
| abstract_inverted_index.most | 119 |
| abstract_inverted_index.need | 50 |
| abstract_inverted_index.show | 185 |
| abstract_inverted_index.some | 204 |
| abstract_inverted_index.such | 4 |
| abstract_inverted_index.task | 76 |
| abstract_inverted_index.test | 163 |
| abstract_inverted_index.that | 40, 182, 207 |
| abstract_inverted_index.with | 167, 175 |
| abstract_inverted_index.(KEE) | 75 |
| abstract_inverted_index.GPT-4 | 168 |
| abstract_inverted_index.LLMs. | 177, 227 |
| abstract_inverted_index.Large | 65 |
| abstract_inverted_index.based | 100 |
| abstract_inverted_index.eight | 97, 136, 160 |
| abstract_inverted_index.field | 25 |
| abstract_inverted_index.graph | 16 |
| abstract_inverted_index.other | 19, 231 |
| abstract_inverted_index.sets. | 200 |
| abstract_inverted_index.sets: | 148 |
| abstract_inverted_index.study | 59 |
| abstract_inverted_index.tasks | 222 |
| abstract_inverted_index.texts | 35, 151, 166 |
| abstract_inverted_index.their | 141, 193 |
| abstract_inverted_index.them. | 57, 102 |
| abstract_inverted_index.there | 46 |
| abstract_inverted_index.these | 135 |
| abstract_inverted_index.token | 142 |
| abstract_inverted_index.using | 81, 134, 226 |
| abstract_inverted_index.which | 90 |
| abstract_inverted_index.(LLMs) | 68 |
| abstract_inverted_index.Claude | 112, 170 |
| abstract_inverted_index.GPT-4, | 110 |
| abstract_inverted_index.Models | 67 |
| abstract_inverted_index.called | 88 |
| abstract_inverted_index.design | 96 |
| abstract_inverted_index.entity | 73, 214 |
| abstract_inverted_index.future | 220 |
| abstract_inverted_index.names, | 129 |
| abstract_inverted_index.object | 7, 125 |
| abstract_inverted_index.prompt | 93 |
| abstract_inverted_index.select | 104 |
| abstract_inverted_index.strong | 237 |
| abstract_inverted_index.tasks, | 191 |
| abstract_inverted_index.varies | 195 |
| abstract_inverted_index.analyze | 203 |
| abstract_inverted_index.attempt | 115 |
| abstract_inverted_index.crucial | 10 |
| abstract_inverted_index.exhibit | 236 |
| abstract_inverted_index.extract | 56, 117 |
| abstract_inverted_index.factors | 206 |
| abstract_inverted_index.journal | 79, 132 |
| abstract_inverted_index.methods | 29, 53, 232 |
| abstract_inverted_index.perform | 70 |
| abstract_inverted_index.prompts | 99 |
| abstract_inverted_index.propose | 84 |
| abstract_inverted_index.provide | 217 |
| abstract_inverted_index.results | 180 |
| abstract_inverted_index.typical | 120 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Finally, | 228 |
| abstract_inverted_index.GPT-3.5, | 109 |
| abstract_inverted_index.Language | 66 |
| abstract_inverted_index.articles | 80, 133, 225 |
| abstract_inverted_index.aspects. | 241 |
| abstract_inverted_index.compared | 229 |
| abstract_inverted_index.entities | 33 |
| abstract_inverted_index.explores | 60 |
| abstract_inverted_index.improved | 52 |
| abstract_inverted_index.includes | 91 |
| abstract_inverted_index.insights | 218 |
| abstract_inverted_index.multiple | 240 |
| abstract_inverted_index.numerous | 37 |
| abstract_inverted_index.pressing | 49 |
| abstract_inverted_index.prompts, | 161 |
| abstract_inverted_index.prompts. | 82, 138 |
| abstract_inverted_index.research | 20 |
| abstract_inverted_index.strategy | 87 |
| abstract_inverted_index.articles. | 157 |
| abstract_inverted_index.celestial | 6, 124 |
| abstract_inverted_index.construct | 145 |
| abstract_inverted_index.difficult | 42 |
| abstract_inverted_index.elements, | 94 |
| abstract_inverted_index.entities, | 3, 123 |
| abstract_inverted_index.important | 205 |
| abstract_inverted_index.influence | 208 |
| abstract_inverted_index.knowledge | 2, 15, 32, 72, 122 |
| abstract_inverted_index.obstacles | 39 |
| abstract_inverted_index.overcome. | 44 |
| abstract_inverted_index.paragraph | 153, 173 |
| abstract_inverted_index.potential | 62, 187 |
| abstract_inverted_index.prompting | 86 |
| abstract_inverted_index.retrieval | 13 |
| abstract_inverted_index.telescope | 128 |
| abstract_inverted_index.Leveraging | 158 |
| abstract_inverted_index.astronomy. | 27 |
| abstract_inverted_index.extracting | 31 |
| abstract_inverted_index.extraction | 74, 215 |
| abstract_inverted_index.literature | 12 |
| abstract_inverted_index.performing | 189 |
| abstract_inverted_index.Prompt-KEE, | 89 |
| abstract_inverted_index.Traditional | 28 |
| abstract_inverted_index.accommodate | 140 |
| abstract_inverted_index.challenging | 38 |
| abstract_inverted_index.collections | 154, 174 |
| abstract_inverted_index.combination | 98, 137 |
| abstract_inverted_index.demonstrate | 181 |
| abstract_inverted_index.efficiently | 55 |
| abstract_inverted_index.identifiers | 126 |
| abstract_inverted_index.performance | 194, 210 |
| abstract_inverted_index.pre-trained | 64, 183 |
| abstract_inverted_index.significant | 186 |
| abstract_inverted_index.Astronomical | 1 |
| abstract_inverted_index.Furthermore, | 201 |
| abstract_inverted_index.applications | 22 |
| abstract_inverted_index.astronomical | 71, 121, 131 |
| abstract_inverted_index.experimental | 179 |
| abstract_inverted_index.identifiers, | 8 |
| abstract_inverted_index.limitations, | 143 |
| abstract_inverted_index.(Llama-2-70B, | 108 |
| abstract_inverted_index.Consequently, | 45 |
| abstract_inverted_index.astrophysical | 78, 224 |
| abstract_inverted_index.construction, | 17 |
| abstract_inverted_index.representative | 106 |
| abstract_inverted_index.competitiveness | 238 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5102007782 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 10 |
| corresponding_institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210164580 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.7099999785423279 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.92858716 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |