Atomistic simulations of two dimensional materials: insights from first principles and molecular dynamics methods Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.65273/hhit.jna.2025.1.1.17-32
Computational methods have become indispensable tools for the discovery and characterization of two-dimensional (2D) materials. This review focuses on the powerful synergy between Density Functional Theory (DFT) and Molecular Dynamics (MD) simulations in understanding these atomically thin systems. We highlight how DFT serves as the cornerstone for predicting fundamental electronic properties such as band structure, defect states, and electronic transport in 2D materials like graphene and transition metal dichalcogenides (TMDs). Concurrently, MD simulations with accurately parameterized force fields provide critical insights into their mechanical resilience, thermal transport, and defect-driven fracture mechanisms. The integration of these two methods enables a multiscale approach to material design, from predicting quantum phenomena at the nanoscale to modeling large-area mechanical performance. This review demonstrates the pivotal role of atomistic simulations in unlocking the vast potential of 2D materials for next-generation electronics, energy, and sensor technologies
Related Topics
- Type
- article
- Landing Page
- https://doi.org/10.65273/hhit.jna.2025.1.1.17-32
- OA Status
- gold
- OpenAlex ID
- https://openalex.org/W4415997421
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415997421Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.65273/hhit.jna.2025.1.1.17-32Digital Object Identifier
- Title
-
Atomistic simulations of two dimensional materials: insights from first principles and molecular dynamics methodsWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-30Full publication date if available
- Authors
-
Ştefan Ţălu, Dũng Nguyễn TrọngList of authors in order
- Landing page
-
https://doi.org/10.65273/hhit.jna.2025.1.1.17-32Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.65273/hhit.jna.2025.1.1.17-32Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415997421 |
|---|---|
| doi | https://doi.org/10.65273/hhit.jna.2025.1.1.17-32 |
| ids.doi | https://doi.org/10.65273/hhit.jna.2025.1.1.17-32 |
| ids.openalex | https://openalex.org/W4415997421 |
| fwci | |
| type | article |
| title | Atomistic simulations of two dimensional materials: insights from first principles and molecular dynamics methods |
| biblio.issue | 1 |
| biblio.volume | 1 |
| biblio.last_page | 32 |
| biblio.first_page | 17 |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | doi:10.65273/hhit.jna.2025.1.1.17-32 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by-nc-sa |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-sa |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Nanomaterials and Applications |
| locations[0].landing_page_url | https://doi.org/10.65273/hhit.jna.2025.1.1.17-32 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5056394507 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1311-7657 |
| authorships[0].author.display_name | Ştefan Ţălu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Stefan Talu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5060551185 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7706-1392 |
| authorships[1].author.display_name | Dũng Nguyễn Trọng |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Dung Nguyen Trong |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.65273/hhit.jna.2025.1.1.17-32 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-07T00:00:00 |
| display_name | Atomistic simulations of two dimensional materials: insights from first principles and molecular dynamics methods |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-08T23:21:52.890332 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.65273/hhit.jna.2025.1.1.17-32 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by-nc-sa |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Nanomaterials and Applications |
| best_oa_location.landing_page_url | https://doi.org/10.65273/hhit.jna.2025.1.1.17-32 |
| primary_location.id | doi:10.65273/hhit.jna.2025.1.1.17-32 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by-nc-sa |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Nanomaterials and Applications |
| primary_location.landing_page_url | https://doi.org/10.65273/hhit.jna.2025.1.1.17-32 |
| publication_date | 2025-10-30 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 98 |
| abstract_inverted_index.2D | 61, 131 |
| abstract_inverted_index.MD | 71 |
| abstract_inverted_index.We | 38 |
| abstract_inverted_index.as | 43, 52 |
| abstract_inverted_index.at | 108 |
| abstract_inverted_index.in | 32, 60, 125 |
| abstract_inverted_index.of | 11, 93, 122, 130 |
| abstract_inverted_index.on | 18 |
| abstract_inverted_index.to | 101, 111 |
| abstract_inverted_index.DFT | 41 |
| abstract_inverted_index.The | 91 |
| abstract_inverted_index.and | 9, 27, 57, 65, 87, 137 |
| abstract_inverted_index.for | 6, 46, 133 |
| abstract_inverted_index.how | 40 |
| abstract_inverted_index.the | 7, 19, 44, 109, 119, 127 |
| abstract_inverted_index.two | 95 |
| abstract_inverted_index.(2D) | 13 |
| abstract_inverted_index.(MD) | 30 |
| abstract_inverted_index.This | 15, 116 |
| abstract_inverted_index.band | 53 |
| abstract_inverted_index.from | 104 |
| abstract_inverted_index.have | 2 |
| abstract_inverted_index.into | 81 |
| abstract_inverted_index.like | 63 |
| abstract_inverted_index.role | 121 |
| abstract_inverted_index.such | 51 |
| abstract_inverted_index.thin | 36 |
| abstract_inverted_index.vast | 128 |
| abstract_inverted_index.with | 73 |
| abstract_inverted_index.(DFT) | 26 |
| abstract_inverted_index.force | 76 |
| abstract_inverted_index.metal | 67 |
| abstract_inverted_index.their | 82 |
| abstract_inverted_index.these | 34, 94 |
| abstract_inverted_index.tools | 5 |
| abstract_inverted_index.Theory | 25 |
| abstract_inverted_index.become | 3 |
| abstract_inverted_index.defect | 55 |
| abstract_inverted_index.fields | 77 |
| abstract_inverted_index.review | 16, 117 |
| abstract_inverted_index.sensor | 138 |
| abstract_inverted_index.serves | 42 |
| abstract_inverted_index.(TMDs). | 69 |
| abstract_inverted_index.Density | 23 |
| abstract_inverted_index.between | 22 |
| abstract_inverted_index.design, | 103 |
| abstract_inverted_index.enables | 97 |
| abstract_inverted_index.energy, | 136 |
| abstract_inverted_index.focuses | 17 |
| abstract_inverted_index.methods | 1, 96 |
| abstract_inverted_index.pivotal | 120 |
| abstract_inverted_index.provide | 78 |
| abstract_inverted_index.quantum | 106 |
| abstract_inverted_index.states, | 56 |
| abstract_inverted_index.synergy | 21 |
| abstract_inverted_index.thermal | 85 |
| abstract_inverted_index.Dynamics | 29 |
| abstract_inverted_index.approach | 100 |
| abstract_inverted_index.critical | 79 |
| abstract_inverted_index.fracture | 89 |
| abstract_inverted_index.graphene | 64 |
| abstract_inverted_index.insights | 80 |
| abstract_inverted_index.material | 102 |
| abstract_inverted_index.modeling | 112 |
| abstract_inverted_index.powerful | 20 |
| abstract_inverted_index.systems. | 37 |
| abstract_inverted_index.Molecular | 28 |
| abstract_inverted_index.atomistic | 123 |
| abstract_inverted_index.discovery | 8 |
| abstract_inverted_index.highlight | 39 |
| abstract_inverted_index.materials | 62, 132 |
| abstract_inverted_index.nanoscale | 110 |
| abstract_inverted_index.phenomena | 107 |
| abstract_inverted_index.potential | 129 |
| abstract_inverted_index.transport | 59 |
| abstract_inverted_index.unlocking | 126 |
| abstract_inverted_index.Functional | 24 |
| abstract_inverted_index.accurately | 74 |
| abstract_inverted_index.atomically | 35 |
| abstract_inverted_index.electronic | 49, 58 |
| abstract_inverted_index.large-area | 113 |
| abstract_inverted_index.materials. | 14 |
| abstract_inverted_index.mechanical | 83, 114 |
| abstract_inverted_index.multiscale | 99 |
| abstract_inverted_index.predicting | 47, 105 |
| abstract_inverted_index.properties | 50 |
| abstract_inverted_index.structure, | 54 |
| abstract_inverted_index.transition | 66 |
| abstract_inverted_index.transport, | 86 |
| abstract_inverted_index.cornerstone | 45 |
| abstract_inverted_index.fundamental | 48 |
| abstract_inverted_index.integration | 92 |
| abstract_inverted_index.mechanisms. | 90 |
| abstract_inverted_index.resilience, | 84 |
| abstract_inverted_index.simulations | 31, 72, 124 |
| abstract_inverted_index.demonstrates | 118 |
| abstract_inverted_index.electronics, | 135 |
| abstract_inverted_index.performance. | 115 |
| abstract_inverted_index.technologies | 139 |
| abstract_inverted_index.Computational | 0 |
| abstract_inverted_index.Concurrently, | 70 |
| abstract_inverted_index.defect-driven | 88 |
| abstract_inverted_index.indispensable | 4 |
| abstract_inverted_index.parameterized | 75 |
| abstract_inverted_index.understanding | 33 |
| abstract_inverted_index.dichalcogenides | 68 |
| abstract_inverted_index.next-generation | 134 |
| abstract_inverted_index.two-dimensional | 12 |
| abstract_inverted_index.characterization | 10 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |