Att-BEVFusion: An Object Detection Algorithm for Camera and LiDAR Fusion Under BEV Features Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/wevj15110539
To improve the accuracy of detecting small and long-distance objects while self-driving cars are in motion, in this paper, we propose a 3D object detection method, Att-BEVFusion, which fuses camera and LiDAR data in a bird’s-eye view (BEV). First, the transformation from the camera view to the BEV space is achieved through an implicit supervision-based method, and then the LiDAR BEV feature point cloud is voxelized and converted into BEV features. Then, a channel attention mechanism is introduced to design a BEV feature fusion network to realize the fusion of camera BEV feature space and LiDAR BEV feature space. Finally, regarding the issue of insufficient global reasoning in the BEV fusion features generated by the channel attention mechanism, as well as the challenge of inadequate interaction between features. We further develop a BEV self-attention mechanism to apply global operations on the features. This paper evaluates the effectiveness of the Att-BEVFusion fusion algorithm on the nuScenes dataset, and the results demonstrate that the algorithm achieved 72.0% mean average precision (mAP) and 74.3% nuScenes detection score (NDS), with an advanced detection accuracy of 88.9% and 91.8% for single-item detection of automotive and pedestrian categories, respectively.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/wevj15110539
- OA Status
- gold
- Cited By
- 1
- References
- 43
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404542565
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404542565Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/wevj15110539Digital Object Identifier
- Title
-
Att-BEVFusion: An Object Detection Algorithm for Camera and LiDAR Fusion Under BEV FeaturesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-20Full publication date if available
- Authors
-
Peicheng Shi, Mengru Zhou, Xinlong Dong, Aixi YangList of authors in order
- Landing page
-
https://doi.org/10.3390/wevj15110539Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/wevj15110539Direct OA link when available
- Concepts
-
Artificial intelligence, Computer science, Lidar, Computer vision, Feature (linguistics), Object detection, Channel (broadcasting), Pedestrian detection, Object (grammar), Fusion mechanism, Feature vector, Fusion, Point cloud, Pattern recognition (psychology), Remote sensing, Pedestrian, Geography, Philosophy, Linguistics, Lipid bilayer fusion, Computer network, ArchaeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
43Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404542565 |
|---|---|
| doi | https://doi.org/10.3390/wevj15110539 |
| ids.doi | https://doi.org/10.3390/wevj15110539 |
| ids.openalex | https://openalex.org/W4404542565 |
| fwci | 0.53015756 |
| type | article |
| title | Att-BEVFusion: An Object Detection Algorithm for Camera and LiDAR Fusion Under BEV Features |
| biblio.issue | 11 |
| biblio.volume | 15 |
| biblio.last_page | 539 |
| biblio.first_page | 539 |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T10331 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.998199999332428 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Video Surveillance and Tracking Methods |
| topics[2].id | https://openalex.org/T11605 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9973000288009644 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Visual Attention and Saliency Detection |
| is_xpac | False |
| apc_list.value | 1000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1082 |
| apc_paid.value | 1000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1082 |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.737591028213501 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7120429277420044 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C51399673 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6676180362701416 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q504027 |
| concepts[2].display_name | Lidar |
| concepts[3].id | https://openalex.org/C31972630 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6630330085754395 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[3].display_name | Computer vision |
| concepts[4].id | https://openalex.org/C2776401178 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6421822309494019 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[4].display_name | Feature (linguistics) |
| concepts[5].id | https://openalex.org/C2776151529 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5885432362556458 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[5].display_name | Object detection |
| concepts[6].id | https://openalex.org/C127162648 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5180304646492004 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[6].display_name | Channel (broadcasting) |
| concepts[7].id | https://openalex.org/C2780156472 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4956415891647339 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2355550 |
| concepts[7].display_name | Pedestrian detection |
| concepts[8].id | https://openalex.org/C2781238097 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4852909445762634 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[8].display_name | Object (grammar) |
| concepts[9].id | https://openalex.org/C173414695 |
| concepts[9].level | 4 |
| concepts[9].score | 0.45690029859542847 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5510276 |
| concepts[9].display_name | Fusion mechanism |
| concepts[10].id | https://openalex.org/C83665646 |
| concepts[10].level | 2 |
| concepts[10].score | 0.450477659702301 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q42139305 |
| concepts[10].display_name | Feature vector |
| concepts[11].id | https://openalex.org/C158525013 |
| concepts[11].level | 2 |
| concepts[11].score | 0.42715075612068176 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2593739 |
| concepts[11].display_name | Fusion |
| concepts[12].id | https://openalex.org/C131979681 |
| concepts[12].level | 2 |
| concepts[12].score | 0.41626495122909546 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1899648 |
| concepts[12].display_name | Point cloud |
| concepts[13].id | https://openalex.org/C153180895 |
| concepts[13].level | 2 |
| concepts[13].score | 0.3437575101852417 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[13].display_name | Pattern recognition (psychology) |
| concepts[14].id | https://openalex.org/C62649853 |
| concepts[14].level | 1 |
| concepts[14].score | 0.19579613208770752 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[14].display_name | Remote sensing |
| concepts[15].id | https://openalex.org/C2777113093 |
| concepts[15].level | 2 |
| concepts[15].score | 0.1508677899837494 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q221488 |
| concepts[15].display_name | Pedestrian |
| concepts[16].id | https://openalex.org/C205649164 |
| concepts[16].level | 0 |
| concepts[16].score | 0.08396309614181519 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[16].display_name | Geography |
| concepts[17].id | https://openalex.org/C138885662 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[17].display_name | Philosophy |
| concepts[18].id | https://openalex.org/C41895202 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[18].display_name | Linguistics |
| concepts[19].id | https://openalex.org/C103038307 |
| concepts[19].level | 3 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q6556360 |
| concepts[19].display_name | Lipid bilayer fusion |
| concepts[20].id | https://openalex.org/C31258907 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[20].display_name | Computer network |
| concepts[21].id | https://openalex.org/C166957645 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[21].display_name | Archaeology |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.737591028213501 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7120429277420044 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/lidar |
| keywords[2].score | 0.6676180362701416 |
| keywords[2].display_name | Lidar |
| keywords[3].id | https://openalex.org/keywords/computer-vision |
| keywords[3].score | 0.6630330085754395 |
| keywords[3].display_name | Computer vision |
| keywords[4].id | https://openalex.org/keywords/feature |
| keywords[4].score | 0.6421822309494019 |
| keywords[4].display_name | Feature (linguistics) |
| keywords[5].id | https://openalex.org/keywords/object-detection |
| keywords[5].score | 0.5885432362556458 |
| keywords[5].display_name | Object detection |
| keywords[6].id | https://openalex.org/keywords/channel |
| keywords[6].score | 0.5180304646492004 |
| keywords[6].display_name | Channel (broadcasting) |
| keywords[7].id | https://openalex.org/keywords/pedestrian-detection |
| keywords[7].score | 0.4956415891647339 |
| keywords[7].display_name | Pedestrian detection |
| keywords[8].id | https://openalex.org/keywords/object |
| keywords[8].score | 0.4852909445762634 |
| keywords[8].display_name | Object (grammar) |
| keywords[9].id | https://openalex.org/keywords/fusion-mechanism |
| keywords[9].score | 0.45690029859542847 |
| keywords[9].display_name | Fusion mechanism |
| keywords[10].id | https://openalex.org/keywords/feature-vector |
| keywords[10].score | 0.450477659702301 |
| keywords[10].display_name | Feature vector |
| keywords[11].id | https://openalex.org/keywords/fusion |
| keywords[11].score | 0.42715075612068176 |
| keywords[11].display_name | Fusion |
| keywords[12].id | https://openalex.org/keywords/point-cloud |
| keywords[12].score | 0.41626495122909546 |
| keywords[12].display_name | Point cloud |
| keywords[13].id | https://openalex.org/keywords/pattern-recognition |
| keywords[13].score | 0.3437575101852417 |
| keywords[13].display_name | Pattern recognition (psychology) |
| keywords[14].id | https://openalex.org/keywords/remote-sensing |
| keywords[14].score | 0.19579613208770752 |
| keywords[14].display_name | Remote sensing |
| keywords[15].id | https://openalex.org/keywords/pedestrian |
| keywords[15].score | 0.1508677899837494 |
| keywords[15].display_name | Pedestrian |
| keywords[16].id | https://openalex.org/keywords/geography |
| keywords[16].score | 0.08396309614181519 |
| keywords[16].display_name | Geography |
| language | en |
| locations[0].id | doi:10.3390/wevj15110539 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2913398011 |
| locations[0].source.issn | 2032-6653 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2032-6653 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | World Electric Vehicle Journal |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | World Electric Vehicle Journal |
| locations[0].landing_page_url | https://doi.org/10.3390/wevj15110539 |
| locations[1].id | pmh:oai:doaj.org/article:157b532ad3824618b9135200f8a4fd46 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | World Electric Vehicle Journal, Vol 15, Iss 11, p 539 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/157b532ad3824618b9135200f8a4fd46 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5046985719 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1533-8154 |
| authorships[0].author.display_name | Peicheng Shi |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I70908550 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000, China |
| authorships[0].institutions[0].id | https://openalex.org/I70908550 |
| authorships[0].institutions[0].ror | https://ror.org/041sj0284 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I70908550 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Anhui Polytechnic University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Peicheng Shi |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000, China |
| authorships[1].author.id | https://openalex.org/A5103094071 |
| authorships[1].author.orcid | https://orcid.org/0009-0001-4501-302X |
| authorships[1].author.display_name | Mengru Zhou |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I70908550 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000, China |
| authorships[1].institutions[0].id | https://openalex.org/I70908550 |
| authorships[1].institutions[0].ror | https://ror.org/041sj0284 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I70908550 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Anhui Polytechnic University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mengru Zhou |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000, China |
| authorships[2].author.id | https://openalex.org/A5101334083 |
| authorships[2].author.orcid | https://orcid.org/0009-0004-3278-6252 |
| authorships[2].author.display_name | Xinlong Dong |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I70908550 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000, China |
| authorships[2].institutions[0].id | https://openalex.org/I70908550 |
| authorships[2].institutions[0].ror | https://ror.org/041sj0284 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I70908550 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Anhui Polytechnic University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xinlong Dong |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000, China |
| authorships[3].author.id | https://openalex.org/A5102010695 |
| authorships[3].author.orcid | https://orcid.org/0009-0006-2029-0537 |
| authorships[3].author.display_name | Aixi Yang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210132079, https://openalex.org/I76130692 |
| authorships[3].affiliations[0].raw_affiliation_string | Polytechnic Institute, Zhejiang University, Hangzhou 310015, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210132079 |
| authorships[3].institutions[0].ror | https://ror.org/03sxnxp24 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210132079 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Hangzhou Wanxiang Polytechnic |
| authorships[3].institutions[1].id | https://openalex.org/I76130692 |
| authorships[3].institutions[1].ror | https://ror.org/00a2xv884 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I76130692 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Zhejiang University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Aixi Yang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Polytechnic Institute, Zhejiang University, Hangzhou 310015, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/wevj15110539 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Att-BEVFusion: An Object Detection Algorithm for Camera and LiDAR Fusion Under BEV Features |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W2624903463, https://openalex.org/W3207051105, https://openalex.org/W2802018156, https://openalex.org/W2101531944, https://openalex.org/W4313315626, https://openalex.org/W2922437833, https://openalex.org/W4312696271, https://openalex.org/W4223892596, https://openalex.org/W2933098581, https://openalex.org/W2556125083 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/wevj15110539 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2913398011 |
| best_oa_location.source.issn | 2032-6653 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2032-6653 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | World Electric Vehicle Journal |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | World Electric Vehicle Journal |
| best_oa_location.landing_page_url | https://doi.org/10.3390/wevj15110539 |
| primary_location.id | doi:10.3390/wevj15110539 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2913398011 |
| primary_location.source.issn | 2032-6653 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2032-6653 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | World Electric Vehicle Journal |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | World Electric Vehicle Journal |
| primary_location.landing_page_url | https://doi.org/10.3390/wevj15110539 |
| publication_date | 2024-11-20 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4310191336, https://openalex.org/W4388757371, https://openalex.org/W3035461736, https://openalex.org/W3170030651, https://openalex.org/W2555618208, https://openalex.org/W2963400571, https://openalex.org/W2508457857, https://openalex.org/W3130463448, https://openalex.org/W4213176388, https://openalex.org/W2950642167, https://openalex.org/W6739778489, https://openalex.org/W4281776619, https://openalex.org/W2897529137, https://openalex.org/W2968296999, https://openalex.org/W4225986494, https://openalex.org/W4390874028, https://openalex.org/W4383066393, https://openalex.org/W3035574168, https://openalex.org/W4401052722, https://openalex.org/W1536680647, https://openalex.org/W3109395584, https://openalex.org/W4382464460, https://openalex.org/W4312617306, https://openalex.org/W4394648181, https://openalex.org/W2962888833, https://openalex.org/W2970095196, https://openalex.org/W2194775991, https://openalex.org/W2193145675, https://openalex.org/W4245835284, https://openalex.org/W4312894406, https://openalex.org/W4386075696, https://openalex.org/W3167095230, https://openalex.org/W3112382384, https://openalex.org/W4312707458, https://openalex.org/W3209639308, https://openalex.org/W6838956374, https://openalex.org/W3017930107, https://openalex.org/W6842385943, https://openalex.org/W3106250896, https://openalex.org/W2963121255, https://openalex.org/W4293112749, https://openalex.org/W4281773951, https://openalex.org/W3107819843 |
| referenced_works_count | 43 |
| abstract_inverted_index.a | 21, 34, 72, 80, 131 |
| abstract_inverted_index.3D | 22 |
| abstract_inverted_index.To | 0 |
| abstract_inverted_index.We | 128 |
| abstract_inverted_index.an | 52, 176 |
| abstract_inverted_index.as | 118, 120 |
| abstract_inverted_index.by | 113 |
| abstract_inverted_index.in | 14, 16, 33, 107 |
| abstract_inverted_index.is | 49, 64, 76 |
| abstract_inverted_index.of | 4, 89, 103, 123, 147, 180, 187 |
| abstract_inverted_index.on | 139, 152 |
| abstract_inverted_index.to | 45, 78, 85, 135 |
| abstract_inverted_index.we | 19 |
| abstract_inverted_index.BEV | 47, 60, 69, 81, 91, 96, 109, 132 |
| abstract_inverted_index.and | 7, 30, 56, 66, 94, 156, 169, 182, 189 |
| abstract_inverted_index.are | 13 |
| abstract_inverted_index.for | 184 |
| abstract_inverted_index.the | 2, 39, 42, 46, 58, 87, 101, 108, 114, 121, 140, 145, 148, 153, 157, 161 |
| abstract_inverted_index.This | 142 |
| abstract_inverted_index.cars | 12 |
| abstract_inverted_index.data | 32 |
| abstract_inverted_index.from | 41 |
| abstract_inverted_index.into | 68 |
| abstract_inverted_index.mean | 165 |
| abstract_inverted_index.that | 160 |
| abstract_inverted_index.then | 57 |
| abstract_inverted_index.this | 17 |
| abstract_inverted_index.view | 36, 44 |
| abstract_inverted_index.well | 119 |
| abstract_inverted_index.with | 175 |
| abstract_inverted_index.(mAP) | 168 |
| abstract_inverted_index.72.0% | 164 |
| abstract_inverted_index.74.3% | 170 |
| abstract_inverted_index.88.9% | 181 |
| abstract_inverted_index.91.8% | 183 |
| abstract_inverted_index.LiDAR | 31, 59, 95 |
| abstract_inverted_index.Then, | 71 |
| abstract_inverted_index.apply | 136 |
| abstract_inverted_index.cloud | 63 |
| abstract_inverted_index.fuses | 28 |
| abstract_inverted_index.issue | 102 |
| abstract_inverted_index.paper | 143 |
| abstract_inverted_index.point | 62 |
| abstract_inverted_index.score | 173 |
| abstract_inverted_index.small | 6 |
| abstract_inverted_index.space | 48, 93 |
| abstract_inverted_index.which | 27 |
| abstract_inverted_index.while | 10 |
| abstract_inverted_index.(BEV). | 37 |
| abstract_inverted_index.(NDS), | 174 |
| abstract_inverted_index.First, | 38 |
| abstract_inverted_index.camera | 29, 43, 90 |
| abstract_inverted_index.design | 79 |
| abstract_inverted_index.fusion | 83, 88, 110, 150 |
| abstract_inverted_index.global | 105, 137 |
| abstract_inverted_index.object | 23 |
| abstract_inverted_index.paper, | 18 |
| abstract_inverted_index.space. | 98 |
| abstract_inverted_index.average | 166 |
| abstract_inverted_index.between | 126 |
| abstract_inverted_index.channel | 73, 115 |
| abstract_inverted_index.develop | 130 |
| abstract_inverted_index.feature | 61, 82, 92, 97 |
| abstract_inverted_index.further | 129 |
| abstract_inverted_index.improve | 1 |
| abstract_inverted_index.method, | 25, 55 |
| abstract_inverted_index.motion, | 15 |
| abstract_inverted_index.network | 84 |
| abstract_inverted_index.objects | 9 |
| abstract_inverted_index.propose | 20 |
| abstract_inverted_index.realize | 86 |
| abstract_inverted_index.results | 158 |
| abstract_inverted_index.through | 51 |
| abstract_inverted_index.Finally, | 99 |
| abstract_inverted_index.accuracy | 3, 179 |
| abstract_inverted_index.achieved | 50, 163 |
| abstract_inverted_index.advanced | 177 |
| abstract_inverted_index.dataset, | 155 |
| abstract_inverted_index.features | 111 |
| abstract_inverted_index.implicit | 53 |
| abstract_inverted_index.nuScenes | 154, 171 |
| abstract_inverted_index.algorithm | 151, 162 |
| abstract_inverted_index.attention | 74, 116 |
| abstract_inverted_index.challenge | 122 |
| abstract_inverted_index.converted | 67 |
| abstract_inverted_index.detecting | 5 |
| abstract_inverted_index.detection | 24, 172, 178, 186 |
| abstract_inverted_index.evaluates | 144 |
| abstract_inverted_index.features. | 70, 127, 141 |
| abstract_inverted_index.generated | 112 |
| abstract_inverted_index.mechanism | 75, 134 |
| abstract_inverted_index.precision | 167 |
| abstract_inverted_index.reasoning | 106 |
| abstract_inverted_index.regarding | 100 |
| abstract_inverted_index.voxelized | 65 |
| abstract_inverted_index.automotive | 188 |
| abstract_inverted_index.inadequate | 124 |
| abstract_inverted_index.introduced | 77 |
| abstract_inverted_index.mechanism, | 117 |
| abstract_inverted_index.operations | 138 |
| abstract_inverted_index.pedestrian | 190 |
| abstract_inverted_index.categories, | 191 |
| abstract_inverted_index.demonstrate | 159 |
| abstract_inverted_index.interaction | 125 |
| abstract_inverted_index.single-item | 185 |
| abstract_inverted_index.bird’s-eye | 35 |
| abstract_inverted_index.insufficient | 104 |
| abstract_inverted_index.self-driving | 11 |
| abstract_inverted_index.Att-BEVFusion | 149 |
| abstract_inverted_index.effectiveness | 146 |
| abstract_inverted_index.long-distance | 8 |
| abstract_inverted_index.respectively. | 192 |
| abstract_inverted_index.Att-BEVFusion, | 26 |
| abstract_inverted_index.self-attention | 133 |
| abstract_inverted_index.transformation | 40 |
| abstract_inverted_index.supervision-based | 54 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5046985719 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I70908550 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.4399999976158142 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.63198886 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |