AttenGluco: Multimodal Transformer-Based Blood Glucose Forecasting on AI-READI Dataset Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2502.09919
Diabetes is a chronic metabolic disorder characterized by persistently high blood glucose levels (BGLs), leading to severe complications such as cardiovascular disease, neuropathy, and retinopathy. Predicting BGLs enables patients to maintain glucose levels within a safe range and allows caregivers to take proactive measures through lifestyle modifications. Continuous Glucose Monitoring (CGM) systems provide real-time tracking, offering a valuable tool for monitoring BGLs. However, accurately forecasting BGLs remains challenging due to fluctuations due to physical activity, diet, and other factors. Recent deep learning models show promise in improving BGL prediction. Nonetheless, forecasting BGLs accurately from multimodal, irregularly sampled data over long prediction horizons remains a challenging research problem. In this paper, we propose AttenGluco, a multimodal Transformer-based framework for long-term blood glucose prediction. AttenGluco employs cross-attention to effectively integrate CGM and activity data, addressing challenges in fusing data with different sampling rates. Moreover, it employs multi-scale attention to capture long-term dependencies in temporal data, enhancing forecasting accuracy. To evaluate the performance of AttenGluco, we conduct forecasting experiments on the recently released AIREADI dataset, analyzing its predictive accuracy across different subject cohorts including healthy individuals, people with prediabetes, and those with type 2 diabetes. Furthermore, we investigate its performance improvements and forgetting behavior as new cohorts are introduced. Our evaluations show that AttenGluco improves all error metrics, such as root mean square error (RMSE), mean absolute error (MAE), and correlation, compared to the multimodal LSTM model. AttenGluco outperforms this baseline model by about 10% and 15% in terms of RMSE and MAE, respectively.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.09919
- https://arxiv.org/pdf/2502.09919
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407632424
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407632424Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2502.09919Digital Object Identifier
- Title
-
AttenGluco: Multimodal Transformer-Based Blood Glucose Forecasting on AI-READI DatasetWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-14Full publication date if available
- Authors
-
Ebrahim Farahmand, Reza Rahimi Azghan, Nooshin Taheri Chatrudi, Eric Kim, Gautham Krishna Gudur, Edison Thomaz, Giulia Pedrielli, Pavan Turaga, Hassan GhasemzadehList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.09919Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.09919Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.09919Direct OA link when available
- Concepts
-
Transformer, Artificial intelligence, Computer science, Engineering, Electrical engineering, VoltageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407632424 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2502.09919 |
| ids.doi | https://doi.org/10.48550/arxiv.2502.09919 |
| ids.openalex | https://openalex.org/W4407632424 |
| fwci | |
| type | preprint |
| title | AttenGluco: Multimodal Transformer-Based Blood Glucose Forecasting on AI-READI Dataset |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11396 |
| topics[0].field.id | https://openalex.org/fields/36 |
| topics[0].field.display_name | Health Professions |
| topics[0].score | 0.9886000156402588 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3605 |
| topics[0].subfield.display_name | Health Information Management |
| topics[0].display_name | Artificial Intelligence in Healthcare |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C66322947 |
| concepts[0].level | 3 |
| concepts[0].score | 0.5930259227752686 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[0].display_name | Transformer |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.41814297437667847 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.39644986391067505 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C127413603 |
| concepts[3].level | 0 |
| concepts[3].score | 0.18059852719306946 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[3].display_name | Engineering |
| concepts[4].id | https://openalex.org/C119599485 |
| concepts[4].level | 1 |
| concepts[4].score | 0.09575194120407104 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[4].display_name | Electrical engineering |
| concepts[5].id | https://openalex.org/C165801399 |
| concepts[5].level | 2 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[5].display_name | Voltage |
| keywords[0].id | https://openalex.org/keywords/transformer |
| keywords[0].score | 0.5930259227752686 |
| keywords[0].display_name | Transformer |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.41814297437667847 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.39644986391067505 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/engineering |
| keywords[3].score | 0.18059852719306946 |
| keywords[3].display_name | Engineering |
| keywords[4].id | https://openalex.org/keywords/electrical-engineering |
| keywords[4].score | 0.09575194120407104 |
| keywords[4].display_name | Electrical engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.09919 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.09919 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.09919 |
| locations[1].id | doi:10.48550/arxiv.2502.09919 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.09919 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5032399641 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3215-3402 |
| authorships[0].author.display_name | Ebrahim Farahmand |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Farahmand, Ebrahim |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5093400175 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Reza Rahimi Azghan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Azghan, Reza Rahimi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5099087767 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Nooshin Taheri Chatrudi |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chatrudi, Nooshin Taheri |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100779045 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5242-0291 |
| authorships[3].author.display_name | Eric Kim |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kim, Eric |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5064061928 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Gautham Krishna Gudur |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Gudur, Gautham Krishna |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5025977484 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8188-0457 |
| authorships[5].author.display_name | Edison Thomaz |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Thomaz, Edison |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5049158387 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-6726-9790 |
| authorships[6].author.display_name | Giulia Pedrielli |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Pedrielli, Giulia |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5062945520 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-5263-5943 |
| authorships[7].author.display_name | Pavan Turaga |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Turaga, Pavan |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5007139473 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-1844-1416 |
| authorships[8].author.display_name | Hassan Ghasemzadeh |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Ghasemzadeh, Hassan |
| authorships[8].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.09919 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | AttenGluco: Multimodal Transformer-Based Blood Glucose Forecasting on AI-READI Dataset |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11396 |
| primary_topic.field.id | https://openalex.org/fields/36 |
| primary_topic.field.display_name | Health Professions |
| primary_topic.score | 0.9886000156402588 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3605 |
| primary_topic.subfield.display_name | Health Information Management |
| primary_topic.display_name | Artificial Intelligence in Healthcare |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.09919 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.09919 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.09919 |
| primary_location.id | pmh:oai:arXiv.org:2502.09919 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.09919 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.09919 |
| publication_date | 2025-02-14 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.2 | 190 |
| abstract_inverted_index.a | 2, 34, 56, 103, 113 |
| abstract_inverted_index.In | 107 |
| abstract_inverted_index.To | 156 |
| abstract_inverted_index.as | 19, 201, 216 |
| abstract_inverted_index.by | 7, 239 |
| abstract_inverted_index.in | 85, 134, 150, 244 |
| abstract_inverted_index.is | 1 |
| abstract_inverted_index.it | 142 |
| abstract_inverted_index.of | 160, 246 |
| abstract_inverted_index.on | 166 |
| abstract_inverted_index.to | 15, 29, 40, 69, 72, 125, 146, 229 |
| abstract_inverted_index.we | 110, 162, 193 |
| abstract_inverted_index.10% | 241 |
| abstract_inverted_index.15% | 243 |
| abstract_inverted_index.BGL | 87 |
| abstract_inverted_index.CGM | 128 |
| abstract_inverted_index.Our | 206 |
| abstract_inverted_index.all | 212 |
| abstract_inverted_index.and | 23, 37, 76, 129, 186, 198, 226, 242, 248 |
| abstract_inverted_index.are | 204 |
| abstract_inverted_index.due | 68, 71 |
| abstract_inverted_index.for | 59, 117 |
| abstract_inverted_index.its | 173, 195 |
| abstract_inverted_index.new | 202 |
| abstract_inverted_index.the | 158, 167, 230 |
| abstract_inverted_index.BGLs | 26, 65, 91 |
| abstract_inverted_index.LSTM | 232 |
| abstract_inverted_index.MAE, | 249 |
| abstract_inverted_index.RMSE | 247 |
| abstract_inverted_index.data | 97, 136 |
| abstract_inverted_index.deep | 80 |
| abstract_inverted_index.from | 93 |
| abstract_inverted_index.high | 9 |
| abstract_inverted_index.long | 99 |
| abstract_inverted_index.mean | 218, 222 |
| abstract_inverted_index.over | 98 |
| abstract_inverted_index.root | 217 |
| abstract_inverted_index.safe | 35 |
| abstract_inverted_index.show | 83, 208 |
| abstract_inverted_index.such | 18, 215 |
| abstract_inverted_index.take | 41 |
| abstract_inverted_index.that | 209 |
| abstract_inverted_index.this | 108, 236 |
| abstract_inverted_index.tool | 58 |
| abstract_inverted_index.type | 189 |
| abstract_inverted_index.with | 137, 184, 188 |
| abstract_inverted_index.(CGM) | 50 |
| abstract_inverted_index.BGLs. | 61 |
| abstract_inverted_index.about | 240 |
| abstract_inverted_index.blood | 10, 119 |
| abstract_inverted_index.data, | 131, 152 |
| abstract_inverted_index.diet, | 75 |
| abstract_inverted_index.error | 213, 220, 224 |
| abstract_inverted_index.model | 238 |
| abstract_inverted_index.other | 77 |
| abstract_inverted_index.range | 36 |
| abstract_inverted_index.terms | 245 |
| abstract_inverted_index.those | 187 |
| abstract_inverted_index.(MAE), | 225 |
| abstract_inverted_index.Recent | 79 |
| abstract_inverted_index.across | 176 |
| abstract_inverted_index.allows | 38 |
| abstract_inverted_index.fusing | 135 |
| abstract_inverted_index.levels | 12, 32 |
| abstract_inverted_index.model. | 233 |
| abstract_inverted_index.models | 82 |
| abstract_inverted_index.paper, | 109 |
| abstract_inverted_index.people | 183 |
| abstract_inverted_index.rates. | 140 |
| abstract_inverted_index.severe | 16 |
| abstract_inverted_index.square | 219 |
| abstract_inverted_index.within | 33 |
| abstract_inverted_index.(BGLs), | 13 |
| abstract_inverted_index.(RMSE), | 221 |
| abstract_inverted_index.AIREADI | 170 |
| abstract_inverted_index.Glucose | 48 |
| abstract_inverted_index.capture | 147 |
| abstract_inverted_index.chronic | 3 |
| abstract_inverted_index.cohorts | 179, 203 |
| abstract_inverted_index.conduct | 163 |
| abstract_inverted_index.employs | 123, 143 |
| abstract_inverted_index.enables | 27 |
| abstract_inverted_index.glucose | 11, 31, 120 |
| abstract_inverted_index.healthy | 181 |
| abstract_inverted_index.leading | 14 |
| abstract_inverted_index.promise | 84 |
| abstract_inverted_index.propose | 111 |
| abstract_inverted_index.provide | 52 |
| abstract_inverted_index.remains | 66, 102 |
| abstract_inverted_index.sampled | 96 |
| abstract_inverted_index.subject | 178 |
| abstract_inverted_index.systems | 51 |
| abstract_inverted_index.through | 44 |
| abstract_inverted_index.Diabetes | 0 |
| abstract_inverted_index.However, | 62 |
| abstract_inverted_index.absolute | 223 |
| abstract_inverted_index.accuracy | 175 |
| abstract_inverted_index.activity | 130 |
| abstract_inverted_index.baseline | 237 |
| abstract_inverted_index.behavior | 200 |
| abstract_inverted_index.compared | 228 |
| abstract_inverted_index.dataset, | 171 |
| abstract_inverted_index.disease, | 21 |
| abstract_inverted_index.disorder | 5 |
| abstract_inverted_index.evaluate | 157 |
| abstract_inverted_index.factors. | 78 |
| abstract_inverted_index.horizons | 101 |
| abstract_inverted_index.improves | 211 |
| abstract_inverted_index.learning | 81 |
| abstract_inverted_index.maintain | 30 |
| abstract_inverted_index.measures | 43 |
| abstract_inverted_index.metrics, | 214 |
| abstract_inverted_index.offering | 55 |
| abstract_inverted_index.patients | 28 |
| abstract_inverted_index.physical | 73 |
| abstract_inverted_index.problem. | 106 |
| abstract_inverted_index.recently | 168 |
| abstract_inverted_index.released | 169 |
| abstract_inverted_index.research | 105 |
| abstract_inverted_index.sampling | 139 |
| abstract_inverted_index.temporal | 151 |
| abstract_inverted_index.valuable | 57 |
| abstract_inverted_index.Moreover, | 141 |
| abstract_inverted_index.accuracy. | 155 |
| abstract_inverted_index.activity, | 74 |
| abstract_inverted_index.analyzing | 172 |
| abstract_inverted_index.attention | 145 |
| abstract_inverted_index.diabetes. | 191 |
| abstract_inverted_index.different | 138, 177 |
| abstract_inverted_index.enhancing | 153 |
| abstract_inverted_index.framework | 116 |
| abstract_inverted_index.improving | 86 |
| abstract_inverted_index.including | 180 |
| abstract_inverted_index.integrate | 127 |
| abstract_inverted_index.lifestyle | 45 |
| abstract_inverted_index.long-term | 118, 148 |
| abstract_inverted_index.metabolic | 4 |
| abstract_inverted_index.proactive | 42 |
| abstract_inverted_index.real-time | 53 |
| abstract_inverted_index.tracking, | 54 |
| abstract_inverted_index.AttenGluco | 122, 210, 234 |
| abstract_inverted_index.Continuous | 47 |
| abstract_inverted_index.Monitoring | 49 |
| abstract_inverted_index.Predicting | 25 |
| abstract_inverted_index.accurately | 63, 92 |
| abstract_inverted_index.addressing | 132 |
| abstract_inverted_index.caregivers | 39 |
| abstract_inverted_index.challenges | 133 |
| abstract_inverted_index.forgetting | 199 |
| abstract_inverted_index.monitoring | 60 |
| abstract_inverted_index.multimodal | 114, 231 |
| abstract_inverted_index.prediction | 100 |
| abstract_inverted_index.predictive | 174 |
| abstract_inverted_index.AttenGluco, | 112, 161 |
| abstract_inverted_index.challenging | 67, 104 |
| abstract_inverted_index.effectively | 126 |
| abstract_inverted_index.evaluations | 207 |
| abstract_inverted_index.experiments | 165 |
| abstract_inverted_index.forecasting | 64, 90, 154, 164 |
| abstract_inverted_index.introduced. | 205 |
| abstract_inverted_index.investigate | 194 |
| abstract_inverted_index.irregularly | 95 |
| abstract_inverted_index.multi-scale | 144 |
| abstract_inverted_index.multimodal, | 94 |
| abstract_inverted_index.neuropathy, | 22 |
| abstract_inverted_index.outperforms | 235 |
| abstract_inverted_index.performance | 159, 196 |
| abstract_inverted_index.prediction. | 88, 121 |
| abstract_inverted_index.Furthermore, | 192 |
| abstract_inverted_index.Nonetheless, | 89 |
| abstract_inverted_index.correlation, | 227 |
| abstract_inverted_index.dependencies | 149 |
| abstract_inverted_index.fluctuations | 70 |
| abstract_inverted_index.improvements | 197 |
| abstract_inverted_index.individuals, | 182 |
| abstract_inverted_index.persistently | 8 |
| abstract_inverted_index.prediabetes, | 185 |
| abstract_inverted_index.retinopathy. | 24 |
| abstract_inverted_index.characterized | 6 |
| abstract_inverted_index.complications | 17 |
| abstract_inverted_index.respectively. | 250 |
| abstract_inverted_index.cardiovascular | 20 |
| abstract_inverted_index.modifications. | 46 |
| abstract_inverted_index.cross-attention | 124 |
| abstract_inverted_index.Transformer-based | 115 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile |