Attention-Based Convolutional LSTM for Describing Video Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1109/access.2020.3010872
Video description technique has been widely used in the computer community for many applications. The typical approaches are mainly based on the encode-decode framework: the fixed-length video representation vectors are extracted by the encoder using the upper layer output of pre-trained convolutional neural networks (CNNs); The decoder uses the recurrent neural networks to generate a textual sentence. However, the upper layers of convolutional neural networks contain low-resolution, semantically strong, while the lower layers contain high-resolution, semantically weak features. In the existing method, the multi-scale information of CNNs is hardly considered to be used in the video description. Ignoring this information will lead to the problem that the video description is not detailed and comprehensive. This paper applies the hierarchical convolutional long short-term memory (ConvLSTM) in the encode-decode framework to conduct feature extraction of the upper and lower layers in CNNs. Moreover, multiple network structures are designed to explore the Spatio-temporal feature extraction performance of ConvLSTM, which can approach the optimal accuracy in the three-layer ConvLSTM. In order to efficiently improve the language quality of video description, the attention mechanism focuses on visual feature output by ConvLSTM. The extensive experimental results demonstrate that the proposed method outperforms the existing approaches.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2020.3010872
- https://ieeexplore.ieee.org/ielx7/6287639/8948470/09145733.pdf
- OA Status
- gold
- Cited By
- 6
- References
- 65
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3043973718
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3043973718Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2020.3010872Digital Object Identifier
- Title
-
Attention-Based Convolutional LSTM for Describing VideoWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-01Full publication date if available
- Authors
-
Zhongyu Liu, Chen Tian, Enjie Ding, Ya‐Feng Liu, Wanli YuList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2020.3010872Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/8948470/09145733.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/8948470/09145733.pdfDirect OA link when available
- Concepts
-
Computer science, ENCODE, Convolutional neural network, Artificial intelligence, Encoder, Feature extraction, Sentence, Feature (linguistics), Representation (politics), Encoding (memory), Layer (electronics), Pattern recognition (psychology), Semantics (computer science), Recurrent neural network, Artificial neural network, Gene, Philosophy, Programming language, Law, Biochemistry, Operating system, Politics, Chemistry, Political science, Organic chemistry, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2, 2022: 2, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
65Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3043973718 |
|---|---|
| doi | https://doi.org/10.1109/access.2020.3010872 |
| ids.doi | https://doi.org/10.1109/access.2020.3010872 |
| ids.mag | 3043973718 |
| ids.openalex | https://openalex.org/W3043973718 |
| fwci | 0.31490195 |
| type | article |
| title | Attention-Based Convolutional LSTM for Describing Video |
| biblio.issue | |
| biblio.volume | 8 |
| biblio.last_page | 133724 |
| biblio.first_page | 133713 |
| topics[0].id | https://openalex.org/T11714 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Multimodal Machine Learning Applications |
| topics[1].id | https://openalex.org/T10812 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9990000128746033 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Human Pose and Action Recognition |
| topics[2].id | https://openalex.org/T11439 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9939000010490417 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Video Analysis and Summarization |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8979930877685547 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C66746571 |
| concepts[1].level | 3 |
| concepts[1].score | 0.8305666446685791 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1134833 |
| concepts[1].display_name | ENCODE |
| concepts[2].id | https://openalex.org/C81363708 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6760336756706238 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[2].display_name | Convolutional neural network |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6354718804359436 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C118505674 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6323138475418091 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q42586063 |
| concepts[4].display_name | Encoder |
| concepts[5].id | https://openalex.org/C52622490 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5391632914543152 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[5].display_name | Feature extraction |
| concepts[6].id | https://openalex.org/C2777530160 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5263403654098511 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q41796 |
| concepts[6].display_name | Sentence |
| concepts[7].id | https://openalex.org/C2776401178 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5164123177528381 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[7].display_name | Feature (linguistics) |
| concepts[8].id | https://openalex.org/C2776359362 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4863220155239105 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[8].display_name | Representation (politics) |
| concepts[9].id | https://openalex.org/C125411270 |
| concepts[9].level | 2 |
| concepts[9].score | 0.476682186126709 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q18653 |
| concepts[9].display_name | Encoding (memory) |
| concepts[10].id | https://openalex.org/C2779227376 |
| concepts[10].level | 2 |
| concepts[10].score | 0.46496182680130005 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q6505497 |
| concepts[10].display_name | Layer (electronics) |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4541090130805969 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C184337299 |
| concepts[12].level | 2 |
| concepts[12].score | 0.44205284118652344 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1437428 |
| concepts[12].display_name | Semantics (computer science) |
| concepts[13].id | https://openalex.org/C147168706 |
| concepts[13].level | 3 |
| concepts[13].score | 0.4245797395706177 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1457734 |
| concepts[13].display_name | Recurrent neural network |
| concepts[14].id | https://openalex.org/C50644808 |
| concepts[14].level | 2 |
| concepts[14].score | 0.35073643922805786 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[14].display_name | Artificial neural network |
| concepts[15].id | https://openalex.org/C104317684 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[15].display_name | Gene |
| concepts[16].id | https://openalex.org/C138885662 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[16].display_name | Philosophy |
| concepts[17].id | https://openalex.org/C199360897 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[17].display_name | Programming language |
| concepts[18].id | https://openalex.org/C199539241 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[18].display_name | Law |
| concepts[19].id | https://openalex.org/C55493867 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[19].display_name | Biochemistry |
| concepts[20].id | https://openalex.org/C111919701 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[20].display_name | Operating system |
| concepts[21].id | https://openalex.org/C94625758 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[21].display_name | Politics |
| concepts[22].id | https://openalex.org/C185592680 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[22].display_name | Chemistry |
| concepts[23].id | https://openalex.org/C17744445 |
| concepts[23].level | 0 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[23].display_name | Political science |
| concepts[24].id | https://openalex.org/C178790620 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[24].display_name | Organic chemistry |
| concepts[25].id | https://openalex.org/C41895202 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[25].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8979930877685547 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/encode |
| keywords[1].score | 0.8305666446685791 |
| keywords[1].display_name | ENCODE |
| keywords[2].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[2].score | 0.6760336756706238 |
| keywords[2].display_name | Convolutional neural network |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6354718804359436 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/encoder |
| keywords[4].score | 0.6323138475418091 |
| keywords[4].display_name | Encoder |
| keywords[5].id | https://openalex.org/keywords/feature-extraction |
| keywords[5].score | 0.5391632914543152 |
| keywords[5].display_name | Feature extraction |
| keywords[6].id | https://openalex.org/keywords/sentence |
| keywords[6].score | 0.5263403654098511 |
| keywords[6].display_name | Sentence |
| keywords[7].id | https://openalex.org/keywords/feature |
| keywords[7].score | 0.5164123177528381 |
| keywords[7].display_name | Feature (linguistics) |
| keywords[8].id | https://openalex.org/keywords/representation |
| keywords[8].score | 0.4863220155239105 |
| keywords[8].display_name | Representation (politics) |
| keywords[9].id | https://openalex.org/keywords/encoding |
| keywords[9].score | 0.476682186126709 |
| keywords[9].display_name | Encoding (memory) |
| keywords[10].id | https://openalex.org/keywords/layer |
| keywords[10].score | 0.46496182680130005 |
| keywords[10].display_name | Layer (electronics) |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.4541090130805969 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/semantics |
| keywords[12].score | 0.44205284118652344 |
| keywords[12].display_name | Semantics (computer science) |
| keywords[13].id | https://openalex.org/keywords/recurrent-neural-network |
| keywords[13].score | 0.4245797395706177 |
| keywords[13].display_name | Recurrent neural network |
| keywords[14].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[14].score | 0.35073643922805786 |
| keywords[14].display_name | Artificial neural network |
| language | en |
| locations[0].id | doi:10.1109/access.2020.3010872 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8948470/09145733.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2020.3010872 |
| locations[1].id | pmh:oai:doaj.org/article:fb9c1b61cc8a4081afa7ab6411781641 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 8, Pp 133713-133724 (2020) |
| locations[1].landing_page_url | https://doaj.org/article/fb9c1b61cc8a4081afa7ab6411781641 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5101918197 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Zhongyu Liu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I25757504 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I25757504 |
| authorships[0].affiliations[1].raw_affiliation_string | IOT Perception Mine Research Center, China University of Mining and Technology, Xuzhou, China |
| authorships[0].institutions[0].id | https://openalex.org/I25757504 |
| authorships[0].institutions[0].ror | https://ror.org/01xt2dr21 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I25757504 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | China University of Mining and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhongyu Liu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | IOT Perception Mine Research Center, China University of Mining and Technology, Xuzhou, China, School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China |
| authorships[1].author.id | https://openalex.org/A5100751736 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2710-7628 |
| authorships[1].author.display_name | Chen Tian |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I25757504 |
| authorships[1].affiliations[0].raw_affiliation_string | IOT Perception Mine Research Center, China University of Mining and Technology, Xuzhou, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I25757504 |
| authorships[1].affiliations[1].raw_affiliation_string | School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China |
| authorships[1].institutions[0].id | https://openalex.org/I25757504 |
| authorships[1].institutions[0].ror | https://ror.org/01xt2dr21 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I25757504 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | China University of Mining and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tian Chen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | IOT Perception Mine Research Center, China University of Mining and Technology, Xuzhou, China, School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China |
| authorships[2].author.id | https://openalex.org/A5049071749 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1273-076X |
| authorships[2].author.display_name | Enjie Ding |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I25757504 |
| authorships[2].affiliations[0].raw_affiliation_string | IOT Perception Mine Research Center, China University of Mining and Technology, Xuzhou, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I25757504 |
| authorships[2].affiliations[1].raw_affiliation_string | School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China |
| authorships[2].institutions[0].id | https://openalex.org/I25757504 |
| authorships[2].institutions[0].ror | https://ror.org/01xt2dr21 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I25757504 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | China University of Mining and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Enjie Ding |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | IOT Perception Mine Research Center, China University of Mining and Technology, Xuzhou, China, School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China |
| authorships[3].author.id | https://openalex.org/A5020753840 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9684-9150 |
| authorships[3].author.display_name | Ya‐Feng Liu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I25757504 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I25757504 |
| authorships[3].affiliations[1].raw_affiliation_string | IOT Perception Mine Research Center, China University of Mining and Technology, Xuzhou, China |
| authorships[3].institutions[0].id | https://openalex.org/I25757504 |
| authorships[3].institutions[0].ror | https://ror.org/01xt2dr21 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I25757504 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | China University of Mining and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yafeng Liu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | IOT Perception Mine Research Center, China University of Mining and Technology, Xuzhou, China, School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China |
| authorships[4].author.id | https://openalex.org/A5058429956 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1299-6223 |
| authorships[4].author.display_name | Wanli Yu |
| authorships[4].countries | DE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I180437899 |
| authorships[4].affiliations[0].raw_affiliation_string | Institute of Electrodynamics and Microelectronics, University of Bremen, Bremen, Germany |
| authorships[4].institutions[0].id | https://openalex.org/I180437899 |
| authorships[4].institutions[0].ror | https://ror.org/04ers2y35 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I180437899 |
| authorships[4].institutions[0].country_code | DE |
| authorships[4].institutions[0].display_name | University of Bremen |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Wanli Yu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Institute of Electrodynamics and Microelectronics, University of Bremen, Bremen, Germany |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/8948470/09145733.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Attention-Based Convolutional LSTM for Describing Video |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11714 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Multimodal Machine Learning Applications |
| related_works | https://openalex.org/W2372020181, https://openalex.org/W2156531654, https://openalex.org/W4378714697, https://openalex.org/W1950940422, https://openalex.org/W1581723585, https://openalex.org/W2294330161, https://openalex.org/W2804553224, https://openalex.org/W4283822356, https://openalex.org/W3031223029, https://openalex.org/W2129146436 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2020.3010872 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8948470/09145733.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2020.3010872 |
| primary_location.id | doi:10.1109/access.2020.3010872 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8948470/09145733.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2020.3010872 |
| publication_date | 2020-01-01 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2079735306, https://openalex.org/W2064675550, https://openalex.org/W2556388456, https://openalex.org/W2752191396, https://openalex.org/W2523993696, https://openalex.org/W6746309015, https://openalex.org/W2107878631, https://openalex.org/W2962907269, https://openalex.org/W2945961616, https://openalex.org/W2951390634, https://openalex.org/W2905145027, https://openalex.org/W2584992898, https://openalex.org/W2557264465, https://openalex.org/W1931639407, https://openalex.org/W2220981600, https://openalex.org/W2142900973, https://openalex.org/W2963576560, https://openalex.org/W1947481528, https://openalex.org/W2945223572, https://openalex.org/W2803620531, https://openalex.org/W2554906389, https://openalex.org/W2963971014, https://openalex.org/W2101105183, https://openalex.org/W2133459682, https://openalex.org/W2962994439, https://openalex.org/W6765766786, https://openalex.org/W2739107216, https://openalex.org/W6600284362, https://openalex.org/W6639432524, https://openalex.org/W1956340063, https://openalex.org/W2110933980, https://openalex.org/W6691419566, https://openalex.org/W2157331557, https://openalex.org/W6680145277, https://openalex.org/W2139501017, https://openalex.org/W1586939924, https://openalex.org/W1573040851, https://openalex.org/W1522734439, https://openalex.org/W2907584218, https://openalex.org/W2915824159, https://openalex.org/W1485009520, https://openalex.org/W2775755471, https://openalex.org/W2962795934, https://openalex.org/W2963693541, https://openalex.org/W2893202042, https://openalex.org/W1601567445, https://openalex.org/W1955716484, https://openalex.org/W2425121537, https://openalex.org/W2527349934, https://openalex.org/W2602024454, https://openalex.org/W2194775991, https://openalex.org/W2753783593, https://openalex.org/W2293983223, https://openalex.org/W2744063879, https://openalex.org/W2740570963, https://openalex.org/W2610635404, https://openalex.org/W6695662000, https://openalex.org/W2251353663, https://openalex.org/W2964241990, https://openalex.org/W2963504927, https://openalex.org/W6908809, https://openalex.org/W2962861647, https://openalex.org/W3098682680, https://openalex.org/W2284289336, https://openalex.org/W1889081078 |
| referenced_works_count | 65 |
| abstract_inverted_index.a | 54 |
| abstract_inverted_index.In | 78, 165 |
| abstract_inverted_index.be | 91 |
| abstract_inverted_index.by | 31, 184 |
| abstract_inverted_index.in | 7, 93, 124, 138, 161 |
| abstract_inverted_index.is | 87, 109 |
| abstract_inverted_index.of | 39, 61, 85, 132, 153, 173 |
| abstract_inverted_index.on | 20, 180 |
| abstract_inverted_index.to | 52, 90, 102, 128, 146, 167 |
| abstract_inverted_index.The | 14, 45, 186 |
| abstract_inverted_index.and | 112, 135 |
| abstract_inverted_index.are | 17, 29, 144 |
| abstract_inverted_index.can | 156 |
| abstract_inverted_index.for | 11 |
| abstract_inverted_index.has | 3 |
| abstract_inverted_index.not | 110 |
| abstract_inverted_index.the | 8, 21, 24, 32, 35, 48, 58, 70, 79, 82, 94, 103, 106, 117, 125, 133, 148, 158, 162, 170, 176, 192, 196 |
| abstract_inverted_index.CNNs | 86 |
| abstract_inverted_index.This | 114 |
| abstract_inverted_index.been | 4 |
| abstract_inverted_index.lead | 101 |
| abstract_inverted_index.long | 120 |
| abstract_inverted_index.many | 12 |
| abstract_inverted_index.that | 105, 191 |
| abstract_inverted_index.this | 98 |
| abstract_inverted_index.used | 6, 92 |
| abstract_inverted_index.uses | 47 |
| abstract_inverted_index.weak | 76 |
| abstract_inverted_index.will | 100 |
| abstract_inverted_index.CNNs. | 139 |
| abstract_inverted_index.Video | 0 |
| abstract_inverted_index.based | 19 |
| abstract_inverted_index.layer | 37 |
| abstract_inverted_index.lower | 71, 136 |
| abstract_inverted_index.order | 166 |
| abstract_inverted_index.paper | 115 |
| abstract_inverted_index.upper | 36, 59, 134 |
| abstract_inverted_index.using | 34 |
| abstract_inverted_index.video | 26, 95, 107, 174 |
| abstract_inverted_index.which | 155 |
| abstract_inverted_index.while | 69 |
| abstract_inverted_index.hardly | 88 |
| abstract_inverted_index.layers | 60, 72, 137 |
| abstract_inverted_index.mainly | 18 |
| abstract_inverted_index.memory | 122 |
| abstract_inverted_index.method | 194 |
| abstract_inverted_index.neural | 42, 50, 63 |
| abstract_inverted_index.output | 38, 183 |
| abstract_inverted_index.visual | 181 |
| abstract_inverted_index.widely | 5 |
| abstract_inverted_index.(CNNs); | 44 |
| abstract_inverted_index.applies | 116 |
| abstract_inverted_index.conduct | 129 |
| abstract_inverted_index.contain | 65, 73 |
| abstract_inverted_index.decoder | 46 |
| abstract_inverted_index.encoder | 33 |
| abstract_inverted_index.explore | 147 |
| abstract_inverted_index.feature | 130, 150, 182 |
| abstract_inverted_index.focuses | 179 |
| abstract_inverted_index.improve | 169 |
| abstract_inverted_index.method, | 81 |
| abstract_inverted_index.network | 142 |
| abstract_inverted_index.optimal | 159 |
| abstract_inverted_index.problem | 104 |
| abstract_inverted_index.quality | 172 |
| abstract_inverted_index.results | 189 |
| abstract_inverted_index.strong, | 68 |
| abstract_inverted_index.textual | 55 |
| abstract_inverted_index.typical | 15 |
| abstract_inverted_index.vectors | 28 |
| abstract_inverted_index.However, | 57 |
| abstract_inverted_index.Ignoring | 97 |
| abstract_inverted_index.accuracy | 160 |
| abstract_inverted_index.approach | 157 |
| abstract_inverted_index.computer | 9 |
| abstract_inverted_index.designed | 145 |
| abstract_inverted_index.detailed | 111 |
| abstract_inverted_index.existing | 80, 197 |
| abstract_inverted_index.generate | 53 |
| abstract_inverted_index.language | 171 |
| abstract_inverted_index.multiple | 141 |
| abstract_inverted_index.networks | 43, 51, 64 |
| abstract_inverted_index.proposed | 193 |
| abstract_inverted_index.ConvLSTM, | 154 |
| abstract_inverted_index.ConvLSTM. | 164, 185 |
| abstract_inverted_index.Moreover, | 140 |
| abstract_inverted_index.attention | 177 |
| abstract_inverted_index.community | 10 |
| abstract_inverted_index.extensive | 187 |
| abstract_inverted_index.extracted | 30 |
| abstract_inverted_index.features. | 77 |
| abstract_inverted_index.framework | 127 |
| abstract_inverted_index.mechanism | 178 |
| abstract_inverted_index.recurrent | 49 |
| abstract_inverted_index.sentence. | 56 |
| abstract_inverted_index.technique | 2 |
| abstract_inverted_index.(ConvLSTM) | 123 |
| abstract_inverted_index.approaches | 16 |
| abstract_inverted_index.considered | 89 |
| abstract_inverted_index.extraction | 131, 151 |
| abstract_inverted_index.framework: | 23 |
| abstract_inverted_index.short-term | 121 |
| abstract_inverted_index.structures | 143 |
| abstract_inverted_index.approaches. | 198 |
| abstract_inverted_index.demonstrate | 190 |
| abstract_inverted_index.description | 1, 108 |
| abstract_inverted_index.efficiently | 168 |
| abstract_inverted_index.information | 84, 99 |
| abstract_inverted_index.multi-scale | 83 |
| abstract_inverted_index.outperforms | 195 |
| abstract_inverted_index.performance | 152 |
| abstract_inverted_index.pre-trained | 40 |
| abstract_inverted_index.three-layer | 163 |
| abstract_inverted_index.description, | 175 |
| abstract_inverted_index.description. | 96 |
| abstract_inverted_index.experimental | 188 |
| abstract_inverted_index.fixed-length | 25 |
| abstract_inverted_index.hierarchical | 118 |
| abstract_inverted_index.semantically | 67, 75 |
| abstract_inverted_index.applications. | 13 |
| abstract_inverted_index.convolutional | 41, 62, 119 |
| abstract_inverted_index.encode-decode | 22, 126 |
| abstract_inverted_index.comprehensive. | 113 |
| abstract_inverted_index.representation | 27 |
| abstract_inverted_index.Spatio-temporal | 149 |
| abstract_inverted_index.low-resolution, | 66 |
| abstract_inverted_index.high-resolution, | 74 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.8199999928474426 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.57460084 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |