Attention-guided cross-modal multiple feature aggregation network for RGB-D salient object detection Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3934/era.2024031
The goal of RGB-D salient object detection is to aggregate the information of the two modalities of RGB and depth to accurately detect and segment salient objects. Existing RGB-D SOD models can extract the multilevel features of single modality well and can also integrate cross-modal features, but it can rarely handle both at the same time. To tap into and make the most of the correlations of intra- and inter-modality information, in this paper, we proposed an attention-guided cross-modal multi-feature aggregation network for RGB-D SOD. Our motivation was that both cross-modal feature fusion and multilevel feature fusion are crucial for RGB-D SOD task. The main innovation of this work lies in two points: One is the cross-modal pyramid feature interaction (CPFI) module that integrates multilevel features from both RGB and depth modalities in a bottom-up manner, and the other is cross-modal feature decoder (CMFD) that aggregates the fused features to generate the final saliency map. Extensive experiments on six benchmark datasets showed that the proposed attention-guided cross-modal multiple feature aggregation network (ACFPA-Net) achieved competitive performance over 15 state of the art (SOTA) RGB-D SOD methods, both qualitatively and quantitatively.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3934/era.2024031
- OA Status
- gold
- Cited By
- 3
- References
- 114
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390777507
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390777507Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3934/era.2024031Digital Object Identifier
- Title
-
Attention-guided cross-modal multiple feature aggregation network for RGB-D salient object detectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Bojian Chen, Wenbin Wu, Zhezhou Li, Tengfei Han, Zhuolei Chen, Weihao ZhangList of authors in order
- Landing page
-
https://doi.org/10.3934/era.2024031Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3934/era.2024031Direct OA link when available
- Concepts
-
RGB color model, Feature (linguistics), Artificial intelligence, Computer science, Benchmark (surveying), Modal, Pattern recognition (psychology), Modality (human–computer interaction), Salient, Computer vision, Geography, Linguistics, Geodesy, Chemistry, Philosophy, Polymer chemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
114Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390777507 |
|---|---|
| doi | https://doi.org/10.3934/era.2024031 |
| ids.doi | https://doi.org/10.3934/era.2024031 |
| ids.openalex | https://openalex.org/W4390777507 |
| fwci | 1.59047268 |
| type | article |
| title | Attention-guided cross-modal multiple feature aggregation network for RGB-D salient object detection |
| biblio.issue | 1 |
| biblio.volume | 32 |
| biblio.last_page | 669 |
| biblio.first_page | 643 |
| topics[0].id | https://openalex.org/T11605 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Visual Attention and Saliency Detection |
| topics[1].id | https://openalex.org/T11094 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9732000231742859 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | Face Recognition and Perception |
| topics[2].id | https://openalex.org/T10971 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9718000292778015 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2809 |
| topics[2].subfield.display_name | Sensory Systems |
| topics[2].display_name | Olfactory and Sensory Function Studies |
| is_xpac | False |
| apc_list.value | 1000 |
| apc_list.currency | USD |
| apc_list.value_usd | 1000 |
| apc_paid.value | 1000 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1000 |
| concepts[0].id | https://openalex.org/C82990744 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8119436502456665 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q166194 |
| concepts[0].display_name | RGB color model |
| concepts[1].id | https://openalex.org/C2776401178 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7452127933502197 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[1].display_name | Feature (linguistics) |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6631456613540649 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6470528244972229 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C185798385 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6140545606613159 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[4].display_name | Benchmark (surveying) |
| concepts[5].id | https://openalex.org/C71139939 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5762481093406677 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q910194 |
| concepts[5].display_name | Modal |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5672163963317871 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C2780226545 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5411099791526794 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q6888030 |
| concepts[7].display_name | Modality (human–computer interaction) |
| concepts[8].id | https://openalex.org/C2780719617 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5023972988128662 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1030752 |
| concepts[8].display_name | Salient |
| concepts[9].id | https://openalex.org/C31972630 |
| concepts[9].level | 1 |
| concepts[9].score | 0.41794461011886597 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[9].display_name | Computer vision |
| concepts[10].id | https://openalex.org/C205649164 |
| concepts[10].level | 0 |
| concepts[10].score | 0.08044716715812683 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[10].display_name | Geography |
| concepts[11].id | https://openalex.org/C41895202 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[11].display_name | Linguistics |
| concepts[12].id | https://openalex.org/C13280743 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[12].display_name | Geodesy |
| concepts[13].id | https://openalex.org/C185592680 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[13].display_name | Chemistry |
| concepts[14].id | https://openalex.org/C138885662 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[14].display_name | Philosophy |
| concepts[15].id | https://openalex.org/C188027245 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q750446 |
| concepts[15].display_name | Polymer chemistry |
| keywords[0].id | https://openalex.org/keywords/rgb-color-model |
| keywords[0].score | 0.8119436502456665 |
| keywords[0].display_name | RGB color model |
| keywords[1].id | https://openalex.org/keywords/feature |
| keywords[1].score | 0.7452127933502197 |
| keywords[1].display_name | Feature (linguistics) |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6631456613540649 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6470528244972229 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/benchmark |
| keywords[4].score | 0.6140545606613159 |
| keywords[4].display_name | Benchmark (surveying) |
| keywords[5].id | https://openalex.org/keywords/modal |
| keywords[5].score | 0.5762481093406677 |
| keywords[5].display_name | Modal |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.5672163963317871 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/modality |
| keywords[7].score | 0.5411099791526794 |
| keywords[7].display_name | Modality (human–computer interaction) |
| keywords[8].id | https://openalex.org/keywords/salient |
| keywords[8].score | 0.5023972988128662 |
| keywords[8].display_name | Salient |
| keywords[9].id | https://openalex.org/keywords/computer-vision |
| keywords[9].score | 0.41794461011886597 |
| keywords[9].display_name | Computer vision |
| keywords[10].id | https://openalex.org/keywords/geography |
| keywords[10].score | 0.08044716715812683 |
| keywords[10].display_name | Geography |
| language | en |
| locations[0].id | doi:10.3934/era.2024031 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210240239 |
| locations[0].source.issn | 2688-1594 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2688-1594 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Electronic Research Archive |
| locations[0].source.host_organization | https://openalex.org/P4310315844 |
| locations[0].source.host_organization_name | American Institute of Mathematical Sciences |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315844 |
| locations[0].source.host_organization_lineage_names | American Institute of Mathematical Sciences |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Electronic Research Archive |
| locations[0].landing_page_url | https://doi.org/10.3934/era.2024031 |
| locations[1].id | pmh:oai:doaj.org/article:e5aa54719f5e4431abb679153256f12d |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Electronic Research Archive, Vol 32, Iss 1, Pp 643-669 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/e5aa54719f5e4431abb679153256f12d |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5101724769 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9829-0856 |
| authorships[0].author.display_name | Bojian Chen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bojian Chen |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5102378365 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7140-4411 |
| authorships[1].author.display_name | Wenbin Wu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wenbin Wu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5009132437 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8032-1263 |
| authorships[2].author.display_name | Zhezhou Li |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhezhou Li |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5008651014 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8925-1356 |
| authorships[3].author.display_name | Tengfei Han |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tengfei Han |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5046288860 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4870-9081 |
| authorships[4].author.display_name | Zhuolei Chen |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhuolei Chen |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101476782 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-9220-905X |
| authorships[5].author.display_name | Weihao Zhang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210111970 |
| authorships[5].affiliations[0].raw_affiliation_string | State Grid Fujian Electric Power Research Institute, No.64 Shoushan Road, Cangshan District, Fuzhou, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210111970 |
| authorships[5].institutions[0].ror | https://ror.org/0233jyt67 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210111970 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Fujian Electric Power Survey & Design Institute |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Weihao Zhang |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | State Grid Fujian Electric Power Research Institute, No.64 Shoushan Road, Cangshan District, Fuzhou, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3934/era.2024031 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Attention-guided cross-modal multiple feature aggregation network for RGB-D salient object detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11605 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Visual Attention and Saliency Detection |
| related_works | https://openalex.org/W2378211422, https://openalex.org/W2745001401, https://openalex.org/W4321353415, https://openalex.org/W2329500892, https://openalex.org/W2130974462, https://openalex.org/W972276598, https://openalex.org/W4246352526, https://openalex.org/W2028665553, https://openalex.org/W4230315250, https://openalex.org/W627697492 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3934/era.2024031 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210240239 |
| best_oa_location.source.issn | 2688-1594 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2688-1594 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Electronic Research Archive |
| best_oa_location.source.host_organization | https://openalex.org/P4310315844 |
| best_oa_location.source.host_organization_name | American Institute of Mathematical Sciences |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315844 |
| best_oa_location.source.host_organization_lineage_names | American Institute of Mathematical Sciences |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Electronic Research Archive |
| best_oa_location.landing_page_url | https://doi.org/10.3934/era.2024031 |
| primary_location.id | doi:10.3934/era.2024031 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210240239 |
| primary_location.source.issn | 2688-1594 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2688-1594 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Electronic Research Archive |
| primary_location.source.host_organization | https://openalex.org/P4310315844 |
| primary_location.source.host_organization_name | American Institute of Mathematical Sciences |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315844 |
| primary_location.source.host_organization_lineage_names | American Institute of Mathematical Sciences |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Electronic Research Archive |
| primary_location.landing_page_url | https://doi.org/10.3934/era.2024031 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2604144551, https://openalex.org/W1603854802, https://openalex.org/W4316661224, https://openalex.org/W2991366018, https://openalex.org/W3166286626, https://openalex.org/W2912465472, https://openalex.org/W2072761058, https://openalex.org/W2943563866, https://openalex.org/W2020950478, https://openalex.org/W3099468779, https://openalex.org/W3176009039, https://openalex.org/W2729969528, https://openalex.org/W3120432545, https://openalex.org/W2039313011, https://openalex.org/W2047670868, https://openalex.org/W2131095668, https://openalex.org/W2037954058, https://openalex.org/W2472480899, https://openalex.org/W1942214758, https://openalex.org/W1894057436, https://openalex.org/W1947031653, https://openalex.org/W2744613561, https://openalex.org/W2963032190, https://openalex.org/W2963299740, https://openalex.org/W2938260698, https://openalex.org/W2160613239, https://openalex.org/W3118710621, https://openalex.org/W3206791791, https://openalex.org/W2744652457, https://openalex.org/W4313189491, https://openalex.org/W3126725132, https://openalex.org/W4206420686, https://openalex.org/W4362496243, https://openalex.org/W4214741237, https://openalex.org/W2963998427, https://openalex.org/W2128272608, https://openalex.org/W2064365034, https://openalex.org/W2131297486, https://openalex.org/W2963753350, https://openalex.org/W2059753722, https://openalex.org/W1772076007, https://openalex.org/W2783231089, https://openalex.org/W2618530766, https://openalex.org/W2194775991, https://openalex.org/W2963685207, https://openalex.org/W2884555738, https://openalex.org/W2939217524, https://openalex.org/W3035422681, https://openalex.org/W2961348656, https://openalex.org/W2908622466, https://openalex.org/W2948500402, https://openalex.org/W2963706010, https://openalex.org/W3003121299, https://openalex.org/W2948510860, https://openalex.org/W2990984982, https://openalex.org/W1993713494, https://openalex.org/W20683899, https://openalex.org/W1966025376, https://openalex.org/W1976409045, https://openalex.org/W1938386764, https://openalex.org/W2597742770, https://openalex.org/W2969377765, https://openalex.org/W2520640394, https://openalex.org/W3002301267, https://openalex.org/W3034320133, https://openalex.org/W3006465601, https://openalex.org/W3135874576, https://openalex.org/W3114848016, https://openalex.org/W3140528754, https://openalex.org/W3086388316, https://openalex.org/W3108421143, https://openalex.org/W3035284915, https://openalex.org/W2765838470, https://openalex.org/W2907643346, https://openalex.org/W3010616503, https://openalex.org/W2798857366, https://openalex.org/W3035687312, https://openalex.org/W3048216881, https://openalex.org/W3203040502, https://openalex.org/W3134912427, https://openalex.org/W3022015146, https://openalex.org/W2909381593, https://openalex.org/W3035633116, https://openalex.org/W3096966254, https://openalex.org/W3031719679, https://openalex.org/W4214696292, https://openalex.org/W4308180443, https://openalex.org/W4296031724, https://openalex.org/W2921406441, https://openalex.org/W2884585870, https://openalex.org/W3164802490, https://openalex.org/W2179352600, https://openalex.org/W2948300571, https://openalex.org/W2039298799, https://openalex.org/W2957414648, https://openalex.org/W3114152269, https://openalex.org/W3207804100, https://openalex.org/W3170173308, https://openalex.org/W4285163934, https://openalex.org/W4386581228, https://openalex.org/W4315606099, https://openalex.org/W2963529609, https://openalex.org/W2963868681, https://openalex.org/W4312612915, https://openalex.org/W3207668590, https://openalex.org/W4307771365, https://openalex.org/W3212645988, https://openalex.org/W4387968414, https://openalex.org/W3122111862, https://openalex.org/W3101839051, https://openalex.org/W3120113457, https://openalex.org/W3098389804, https://openalex.org/W3098722327, https://openalex.org/W4226017195 |
| referenced_works_count | 114 |
| abstract_inverted_index.a | 133 |
| abstract_inverted_index.15 | 176 |
| abstract_inverted_index.To | 56 |
| abstract_inverted_index.an | 76 |
| abstract_inverted_index.at | 52 |
| abstract_inverted_index.in | 71, 110, 132 |
| abstract_inverted_index.is | 7, 114, 139 |
| abstract_inverted_index.it | 47 |
| abstract_inverted_index.of | 2, 12, 16, 36, 63, 66, 106, 178 |
| abstract_inverted_index.on | 157 |
| abstract_inverted_index.to | 8, 20, 149 |
| abstract_inverted_index.we | 74 |
| abstract_inverted_index.One | 113 |
| abstract_inverted_index.Our | 85 |
| abstract_inverted_index.RGB | 17, 128 |
| abstract_inverted_index.SOD | 29, 101, 183 |
| abstract_inverted_index.The | 103 |
| abstract_inverted_index.and | 18, 23, 40, 59, 68, 93, 129, 136, 187 |
| abstract_inverted_index.are | 97 |
| abstract_inverted_index.art | 180 |
| abstract_inverted_index.but | 46 |
| abstract_inverted_index.can | 31, 41, 48 |
| abstract_inverted_index.for | 82, 99 |
| abstract_inverted_index.six | 158 |
| abstract_inverted_index.tap | 57 |
| abstract_inverted_index.the | 10, 13, 33, 53, 61, 64, 115, 137, 146, 151, 163, 179 |
| abstract_inverted_index.two | 14, 111 |
| abstract_inverted_index.was | 87 |
| abstract_inverted_index.SOD. | 84 |
| abstract_inverted_index.also | 42 |
| abstract_inverted_index.both | 51, 89, 127, 185 |
| abstract_inverted_index.from | 126 |
| abstract_inverted_index.goal | 1 |
| abstract_inverted_index.into | 58 |
| abstract_inverted_index.lies | 109 |
| abstract_inverted_index.main | 104 |
| abstract_inverted_index.make | 60 |
| abstract_inverted_index.map. | 154 |
| abstract_inverted_index.most | 62 |
| abstract_inverted_index.over | 175 |
| abstract_inverted_index.same | 54 |
| abstract_inverted_index.that | 88, 122, 144, 162 |
| abstract_inverted_index.this | 72, 107 |
| abstract_inverted_index.well | 39 |
| abstract_inverted_index.work | 108 |
| abstract_inverted_index.RGB-D | 3, 28, 83, 100, 182 |
| abstract_inverted_index.depth | 19, 130 |
| abstract_inverted_index.final | 152 |
| abstract_inverted_index.fused | 147 |
| abstract_inverted_index.other | 138 |
| abstract_inverted_index.state | 177 |
| abstract_inverted_index.task. | 102 |
| abstract_inverted_index.time. | 55 |
| abstract_inverted_index.(CMFD) | 143 |
| abstract_inverted_index.(CPFI) | 120 |
| abstract_inverted_index.(SOTA) | 181 |
| abstract_inverted_index.detect | 22 |
| abstract_inverted_index.fusion | 92, 96 |
| abstract_inverted_index.handle | 50 |
| abstract_inverted_index.intra- | 67 |
| abstract_inverted_index.models | 30 |
| abstract_inverted_index.module | 121 |
| abstract_inverted_index.object | 5 |
| abstract_inverted_index.paper, | 73 |
| abstract_inverted_index.rarely | 49 |
| abstract_inverted_index.showed | 161 |
| abstract_inverted_index.single | 37 |
| abstract_inverted_index.crucial | 98 |
| abstract_inverted_index.decoder | 142 |
| abstract_inverted_index.extract | 32 |
| abstract_inverted_index.feature | 91, 95, 118, 141, 168 |
| abstract_inverted_index.manner, | 135 |
| abstract_inverted_index.network | 81, 170 |
| abstract_inverted_index.points: | 112 |
| abstract_inverted_index.pyramid | 117 |
| abstract_inverted_index.salient | 4, 25 |
| abstract_inverted_index.segment | 24 |
| abstract_inverted_index.Existing | 27 |
| abstract_inverted_index.achieved | 172 |
| abstract_inverted_index.datasets | 160 |
| abstract_inverted_index.features | 35, 125, 148 |
| abstract_inverted_index.generate | 150 |
| abstract_inverted_index.methods, | 184 |
| abstract_inverted_index.modality | 38 |
| abstract_inverted_index.multiple | 167 |
| abstract_inverted_index.objects. | 26 |
| abstract_inverted_index.proposed | 75, 164 |
| abstract_inverted_index.saliency | 153 |
| abstract_inverted_index.Extensive | 155 |
| abstract_inverted_index.aggregate | 9 |
| abstract_inverted_index.benchmark | 159 |
| abstract_inverted_index.bottom-up | 134 |
| abstract_inverted_index.detection | 6 |
| abstract_inverted_index.features, | 45 |
| abstract_inverted_index.integrate | 43 |
| abstract_inverted_index.accurately | 21 |
| abstract_inverted_index.aggregates | 145 |
| abstract_inverted_index.innovation | 105 |
| abstract_inverted_index.integrates | 123 |
| abstract_inverted_index.modalities | 15, 131 |
| abstract_inverted_index.motivation | 86 |
| abstract_inverted_index.multilevel | 34, 94, 124 |
| abstract_inverted_index.(ACFPA-Net) | 171 |
| abstract_inverted_index.aggregation | 80, 169 |
| abstract_inverted_index.competitive | 173 |
| abstract_inverted_index.cross-modal | 44, 78, 90, 116, 140, 166 |
| abstract_inverted_index.experiments | 156 |
| abstract_inverted_index.information | 11 |
| abstract_inverted_index.interaction | 119 |
| abstract_inverted_index.performance | 174 |
| abstract_inverted_index.correlations | 65 |
| abstract_inverted_index.information, | 70 |
| abstract_inverted_index.multi-feature | 79 |
| abstract_inverted_index.qualitatively | 186 |
| abstract_inverted_index.inter-modality | 69 |
| abstract_inverted_index.attention-guided | 77, 165 |
| abstract_inverted_index.<abstract><p>The | 0 |
| abstract_inverted_index.quantitatively.</p></abstract> | 188 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5101476782 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I4210111970 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.6499999761581421 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.75135116 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |