Attracting random walks Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1214/20-ejp471
This paper introduces the Attracting Random Walks model, which describes the dynamics of a system of particles on a graph with $n$ vertices. At each step, a single particle moves to an adjacent vertex (or stays at the current one) with probability proportional to the exponent of the number of other particles at a vertex. From an applied standpoint, the model captures the rich get richer phenomenon. We show that the Markov chain exhibits a phase transition in mixing time, as the parameter governing the attraction is varied. Namely, mixing time is $O(n\log n)$ when the temperature is sufficiently high and $\exp(Ω(n))$ when temperature is sufficiently low. When $\mathcal{G}$ is the complete graph, the model is a projection of the Potts model, whose mixing properties and the critical temperature have been known previously. However, for any other graph our model is non-reversible and does not seem to admit a simple Gibbsian description of a stationary distribution. Notably, we demonstrate existence of the dynamic phase transition without decomposing the stationary distribution into phases.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1214/20-ejp471
- OA Status
- gold
- References
- 8
- Related Works
- 19
- OpenAlex ID
- https://openalex.org/W2919987542
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2919987542Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1214/20-ejp471Digital Object Identifier
- Title
-
Attracting random walksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-01Full publication date if available
- Authors
-
Julia Gaudio, Yury PolyanskiyList of authors in order
- Landing page
-
https://doi.org/10.1214/20-ejp471Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1214/20-ejp471Direct OA link when available
- Concepts
-
Statistical physics, Random walk, Stationary distribution, Markov chain, Vertex (graph theory), Mixing (physics), Mathematics, Potts model, Graph, Exponent, Omega, Combinatorics, Phase transition, Complete graph, Physics, Thermodynamics, Quantum mechanics, Ising model, Philosophy, Statistics, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
8Number of works referenced by this work
- Related works (count)
-
19Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2919987542 |
|---|---|
| doi | https://doi.org/10.1214/20-ejp471 |
| ids.doi | https://doi.org/10.48550/arxiv.1903.00427 |
| ids.mag | 2919987542 |
| ids.openalex | https://openalex.org/W2919987542 |
| fwci | |
| type | preprint |
| title | Attracting random walks |
| biblio.issue | none |
| biblio.volume | 25 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12056 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Markov Chains and Monte Carlo Methods |
| topics[1].id | https://openalex.org/T11152 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9987999796867371 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2610 |
| topics[1].subfield.display_name | Mathematical Physics |
| topics[1].display_name | Stochastic processes and statistical mechanics |
| topics[2].id | https://openalex.org/T10591 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9950000047683716 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3104 |
| topics[2].subfield.display_name | Condensed Matter Physics |
| topics[2].display_name | Theoretical and Computational Physics |
| is_xpac | False |
| apc_list.value | 675 |
| apc_list.currency | USD |
| apc_list.value_usd | 675 |
| apc_paid.value | 675 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 675 |
| concepts[0].id | https://openalex.org/C121864883 |
| concepts[0].level | 1 |
| concepts[0].score | 0.6567328572273254 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[0].display_name | Statistical physics |
| concepts[1].id | https://openalex.org/C121194460 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6316841840744019 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q856741 |
| concepts[1].display_name | Random walk |
| concepts[2].id | https://openalex.org/C98951983 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6278139352798462 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7604341 |
| concepts[2].display_name | Stationary distribution |
| concepts[3].id | https://openalex.org/C98763669 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6151237487792969 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q176645 |
| concepts[3].display_name | Markov chain |
| concepts[4].id | https://openalex.org/C80899671 |
| concepts[4].level | 3 |
| concepts[4].score | 0.6113155484199524 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1304193 |
| concepts[4].display_name | Vertex (graph theory) |
| concepts[5].id | https://openalex.org/C138777275 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5888928174972534 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q6884054 |
| concepts[5].display_name | Mixing (physics) |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.5399136543273926 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C98925819 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5343702435493469 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7235385 |
| concepts[7].display_name | Potts model |
| concepts[8].id | https://openalex.org/C132525143 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5030087828636169 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[8].display_name | Graph |
| concepts[9].id | https://openalex.org/C2780388253 |
| concepts[9].level | 2 |
| concepts[9].score | 0.49347245693206787 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5421508 |
| concepts[9].display_name | Exponent |
| concepts[10].id | https://openalex.org/C2779557605 |
| concepts[10].level | 2 |
| concepts[10].score | 0.48239433765411377 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9890 |
| concepts[10].display_name | Omega |
| concepts[11].id | https://openalex.org/C114614502 |
| concepts[11].level | 1 |
| concepts[11].score | 0.47992759943008423 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[11].display_name | Combinatorics |
| concepts[12].id | https://openalex.org/C149288129 |
| concepts[12].level | 2 |
| concepts[12].score | 0.44592300057411194 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q185357 |
| concepts[12].display_name | Phase transition |
| concepts[13].id | https://openalex.org/C125080357 |
| concepts[13].level | 3 |
| concepts[13].score | 0.4425339102745056 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q45715 |
| concepts[13].display_name | Complete graph |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.3691605031490326 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| concepts[15].id | https://openalex.org/C97355855 |
| concepts[15].level | 1 |
| concepts[15].score | 0.13388216495513916 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[15].display_name | Thermodynamics |
| concepts[16].id | https://openalex.org/C62520636 |
| concepts[16].level | 1 |
| concepts[16].score | 0.1194005012512207 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[16].display_name | Quantum mechanics |
| concepts[17].id | https://openalex.org/C51329190 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1076349 |
| concepts[17].display_name | Ising model |
| concepts[18].id | https://openalex.org/C138885662 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[18].display_name | Philosophy |
| concepts[19].id | https://openalex.org/C105795698 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[19].display_name | Statistics |
| concepts[20].id | https://openalex.org/C41895202 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[20].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/statistical-physics |
| keywords[0].score | 0.6567328572273254 |
| keywords[0].display_name | Statistical physics |
| keywords[1].id | https://openalex.org/keywords/random-walk |
| keywords[1].score | 0.6316841840744019 |
| keywords[1].display_name | Random walk |
| keywords[2].id | https://openalex.org/keywords/stationary-distribution |
| keywords[2].score | 0.6278139352798462 |
| keywords[2].display_name | Stationary distribution |
| keywords[3].id | https://openalex.org/keywords/markov-chain |
| keywords[3].score | 0.6151237487792969 |
| keywords[3].display_name | Markov chain |
| keywords[4].id | https://openalex.org/keywords/vertex |
| keywords[4].score | 0.6113155484199524 |
| keywords[4].display_name | Vertex (graph theory) |
| keywords[5].id | https://openalex.org/keywords/mixing |
| keywords[5].score | 0.5888928174972534 |
| keywords[5].display_name | Mixing (physics) |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.5399136543273926 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/potts-model |
| keywords[7].score | 0.5343702435493469 |
| keywords[7].display_name | Potts model |
| keywords[8].id | https://openalex.org/keywords/graph |
| keywords[8].score | 0.5030087828636169 |
| keywords[8].display_name | Graph |
| keywords[9].id | https://openalex.org/keywords/exponent |
| keywords[9].score | 0.49347245693206787 |
| keywords[9].display_name | Exponent |
| keywords[10].id | https://openalex.org/keywords/omega |
| keywords[10].score | 0.48239433765411377 |
| keywords[10].display_name | Omega |
| keywords[11].id | https://openalex.org/keywords/combinatorics |
| keywords[11].score | 0.47992759943008423 |
| keywords[11].display_name | Combinatorics |
| keywords[12].id | https://openalex.org/keywords/phase-transition |
| keywords[12].score | 0.44592300057411194 |
| keywords[12].display_name | Phase transition |
| keywords[13].id | https://openalex.org/keywords/complete-graph |
| keywords[13].score | 0.4425339102745056 |
| keywords[13].display_name | Complete graph |
| keywords[14].id | https://openalex.org/keywords/physics |
| keywords[14].score | 0.3691605031490326 |
| keywords[14].display_name | Physics |
| keywords[15].id | https://openalex.org/keywords/thermodynamics |
| keywords[15].score | 0.13388216495513916 |
| keywords[15].display_name | Thermodynamics |
| keywords[16].id | https://openalex.org/keywords/quantum-mechanics |
| keywords[16].score | 0.1194005012512207 |
| keywords[16].display_name | Quantum mechanics |
| language | en |
| locations[0].id | doi:10.1214/20-ejp471 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S181633058 |
| locations[0].source.issn | 1083-6489 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1083-6489 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Electronic Journal of Probability |
| locations[0].source.host_organization | https://openalex.org/P4310319881 |
| locations[0].source.host_organization_name | Institute of Mathematical Statistics |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319881 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Electronic Journal of Probability |
| locations[0].landing_page_url | https://doi.org/10.1214/20-ejp471 |
| locations[1].id | pmh:oai:arXiv.org:1903.00427 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/1903.00427 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/1903.00427 |
| locations[2].id | mag:2919987542 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | arXiv (Cornell University) |
| locations[2].landing_page_url | https://arxiv.org/pdf/1903.00427 |
| locations[3].id | pmh:oai:CULeuclid:euclid.ejp/1593568837 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306400787 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Project Euclid (Cornell University) |
| locations[3].source.host_organization | https://openalex.org/I205783295 |
| locations[3].source.host_organization_name | Cornell University |
| locations[3].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://projecteuclid.org/euclid.ejp/1593568837 |
| locations[4].id | pmh:oai:dspace.mit.edu:1721.1/133477 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400425 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | DSpace@MIT (Massachusetts Institute of Technology) |
| locations[4].source.host_organization | https://openalex.org/I63966007 |
| locations[4].source.host_organization_name | Massachusetts Institute of Technology |
| locations[4].source.host_organization_lineage | https://openalex.org/I63966007 |
| locations[4].license | cc-by-nc |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | http://purl.org/eprint/type/JournalArticle |
| locations[4].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Electronic Journal of Statistics |
| locations[4].landing_page_url | https://hdl.handle.net/1721.1/133477 |
| locations[5].id | doi:10.48550/arxiv.1903.00427 |
| locations[5].is_oa | True |
| locations[5].source.id | https://openalex.org/S4306400194 |
| locations[5].source.issn | |
| locations[5].source.type | repository |
| locations[5].source.is_oa | True |
| locations[5].source.issn_l | |
| locations[5].source.is_core | False |
| locations[5].source.is_in_doaj | False |
| locations[5].source.display_name | arXiv (Cornell University) |
| locations[5].source.host_organization | https://openalex.org/I205783295 |
| locations[5].source.host_organization_name | Cornell University |
| locations[5].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[5].license | |
| locations[5].pdf_url | |
| locations[5].version | |
| locations[5].raw_type | article |
| locations[5].license_id | |
| locations[5].is_accepted | False |
| locations[5].is_published | |
| locations[5].raw_source_name | |
| locations[5].landing_page_url | https://doi.org/10.48550/arxiv.1903.00427 |
| indexed_in | arxiv, crossref, datacite, doaj |
| authorships[0].author.id | https://openalex.org/A5073149598 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3078-1536 |
| authorships[0].author.display_name | Julia Gaudio |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I63966007 |
| authorships[0].affiliations[0].raw_affiliation_string | Massachusetts Institute Of Technology#TAB# |
| authorships[0].institutions[0].id | https://openalex.org/I63966007 |
| authorships[0].institutions[0].ror | https://ror.org/042nb2s44 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I63966007 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Massachusetts Institute of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Julia Gaudio |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Massachusetts Institute Of Technology#TAB# |
| authorships[1].author.id | https://openalex.org/A5031031216 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Yury Polyanskiy |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I63966007 |
| authorships[1].affiliations[0].raw_affiliation_string | Massachusetts Institute Of Technology#TAB# |
| authorships[1].institutions[0].id | https://openalex.org/I63966007 |
| authorships[1].institutions[0].ror | https://ror.org/042nb2s44 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I63966007 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Massachusetts Institute of Technology |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Yury Polyanskiy |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Massachusetts Institute Of Technology#TAB# |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1214/20-ejp471 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Attracting random walks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12056 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Markov Chains and Monte Carlo Methods |
| related_works | https://openalex.org/W1560028702, https://openalex.org/W3095144977, https://openalex.org/W3212097972, https://openalex.org/W2733012493, https://openalex.org/W2963822936, https://openalex.org/W3048192146, https://openalex.org/W1975999171, https://openalex.org/W2949844156, https://openalex.org/W2027808858, https://openalex.org/W3100469701, https://openalex.org/W2949606178, https://openalex.org/W2154654198, https://openalex.org/W1589906916, https://openalex.org/W3097994218, https://openalex.org/W2184693665, https://openalex.org/W2889029211, https://openalex.org/W1858277178, https://openalex.org/W2096481129, https://openalex.org/W3103158139 |
| cited_by_count | 0 |
| locations_count | 6 |
| best_oa_location.id | doi:10.1214/20-ejp471 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S181633058 |
| best_oa_location.source.issn | 1083-6489 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1083-6489 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Electronic Journal of Probability |
| best_oa_location.source.host_organization | https://openalex.org/P4310319881 |
| best_oa_location.source.host_organization_name | Institute of Mathematical Statistics |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319881 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Electronic Journal of Probability |
| best_oa_location.landing_page_url | https://doi.org/10.1214/20-ejp471 |
| primary_location.id | doi:10.1214/20-ejp471 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S181633058 |
| primary_location.source.issn | 1083-6489 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1083-6489 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Electronic Journal of Probability |
| primary_location.source.host_organization | https://openalex.org/P4310319881 |
| primary_location.source.host_organization_name | Institute of Mathematical Statistics |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319881 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Electronic Journal of Probability |
| primary_location.landing_page_url | https://doi.org/10.1214/20-ejp471 |
| publication_date | 2020-01-01 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W1977452791, https://openalex.org/W2069092471, https://openalex.org/W4231320888, https://openalex.org/W2736833145, https://openalex.org/W2029876610, https://openalex.org/W2140422174, https://openalex.org/W1762430620, https://openalex.org/W3092740303 |
| referenced_works_count | 8 |
| abstract_inverted_index.a | 13, 18, 26, 53, 74, 116, 148, 153 |
| abstract_inverted_index.At | 23 |
| abstract_inverted_index.We | 67 |
| abstract_inverted_index.an | 31, 56 |
| abstract_inverted_index.as | 80 |
| abstract_inverted_index.at | 36, 52 |
| abstract_inverted_index.in | 77 |
| abstract_inverted_index.is | 86, 91, 97, 104, 109, 115, 140 |
| abstract_inverted_index.of | 12, 15, 46, 49, 118, 152, 160 |
| abstract_inverted_index.on | 17 |
| abstract_inverted_index.to | 30, 43, 146 |
| abstract_inverted_index.we | 157 |
| abstract_inverted_index.$n$ | 21 |
| abstract_inverted_index.(or | 34 |
| abstract_inverted_index.and | 100, 125, 142 |
| abstract_inverted_index.any | 135 |
| abstract_inverted_index.for | 134 |
| abstract_inverted_index.get | 64 |
| abstract_inverted_index.n)$ | 93 |
| abstract_inverted_index.not | 144 |
| abstract_inverted_index.our | 138 |
| abstract_inverted_index.the | 3, 10, 37, 44, 47, 59, 62, 70, 81, 84, 95, 110, 113, 119, 126, 161, 167 |
| abstract_inverted_index.From | 55 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.When | 107 |
| abstract_inverted_index.been | 130 |
| abstract_inverted_index.does | 143 |
| abstract_inverted_index.each | 24 |
| abstract_inverted_index.have | 129 |
| abstract_inverted_index.high | 99 |
| abstract_inverted_index.into | 170 |
| abstract_inverted_index.low. | 106 |
| abstract_inverted_index.one) | 39 |
| abstract_inverted_index.rich | 63 |
| abstract_inverted_index.seem | 145 |
| abstract_inverted_index.show | 68 |
| abstract_inverted_index.that | 69 |
| abstract_inverted_index.time | 90 |
| abstract_inverted_index.when | 94, 102 |
| abstract_inverted_index.with | 20, 40 |
| abstract_inverted_index.Potts | 120 |
| abstract_inverted_index.Walks | 6 |
| abstract_inverted_index.admit | 147 |
| abstract_inverted_index.chain | 72 |
| abstract_inverted_index.graph | 19, 137 |
| abstract_inverted_index.known | 131 |
| abstract_inverted_index.model | 60, 114, 139 |
| abstract_inverted_index.moves | 29 |
| abstract_inverted_index.other | 50, 136 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.phase | 75, 163 |
| abstract_inverted_index.stays | 35 |
| abstract_inverted_index.step, | 25 |
| abstract_inverted_index.time, | 79 |
| abstract_inverted_index.which | 8 |
| abstract_inverted_index.whose | 122 |
| abstract_inverted_index.Markov | 71 |
| abstract_inverted_index.Random | 5 |
| abstract_inverted_index.graph, | 112 |
| abstract_inverted_index.mixing | 78, 89, 123 |
| abstract_inverted_index.model, | 7, 121 |
| abstract_inverted_index.number | 48 |
| abstract_inverted_index.richer | 65 |
| abstract_inverted_index.simple | 149 |
| abstract_inverted_index.single | 27 |
| abstract_inverted_index.system | 14 |
| abstract_inverted_index.vertex | 33 |
| abstract_inverted_index.Namely, | 88 |
| abstract_inverted_index.applied | 57 |
| abstract_inverted_index.current | 38 |
| abstract_inverted_index.dynamic | 162 |
| abstract_inverted_index.phases. | 171 |
| abstract_inverted_index.varied. | 87 |
| abstract_inverted_index.vertex. | 54 |
| abstract_inverted_index.without | 165 |
| abstract_inverted_index.$O(n\log | 92 |
| abstract_inverted_index.Gibbsian | 150 |
| abstract_inverted_index.However, | 133 |
| abstract_inverted_index.Notably, | 156 |
| abstract_inverted_index.adjacent | 32 |
| abstract_inverted_index.captures | 61 |
| abstract_inverted_index.complete | 111 |
| abstract_inverted_index.critical | 127 |
| abstract_inverted_index.dynamics | 11 |
| abstract_inverted_index.exhibits | 73 |
| abstract_inverted_index.exponent | 45 |
| abstract_inverted_index.particle | 28 |
| abstract_inverted_index.describes | 9 |
| abstract_inverted_index.existence | 159 |
| abstract_inverted_index.governing | 83 |
| abstract_inverted_index.parameter | 82 |
| abstract_inverted_index.particles | 16, 51 |
| abstract_inverted_index.vertices. | 22 |
| abstract_inverted_index.Attracting | 4 |
| abstract_inverted_index.attraction | 85 |
| abstract_inverted_index.introduces | 2 |
| abstract_inverted_index.projection | 117 |
| abstract_inverted_index.properties | 124 |
| abstract_inverted_index.stationary | 154, 168 |
| abstract_inverted_index.transition | 76, 164 |
| abstract_inverted_index.decomposing | 166 |
| abstract_inverted_index.demonstrate | 158 |
| abstract_inverted_index.description | 151 |
| abstract_inverted_index.phenomenon. | 66 |
| abstract_inverted_index.previously. | 132 |
| abstract_inverted_index.probability | 41 |
| abstract_inverted_index.standpoint, | 58 |
| abstract_inverted_index.temperature | 96, 103, 128 |
| abstract_inverted_index.distribution | 169 |
| abstract_inverted_index.proportional | 42 |
| abstract_inverted_index.sufficiently | 98, 105 |
| abstract_inverted_index.$\exp(Ω(n))$ | 101 |
| abstract_inverted_index.$\mathcal{G}$ | 108 |
| abstract_inverted_index.distribution. | 155 |
| abstract_inverted_index.non-reversible | 141 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.00853391 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |