AttriReBoost: A Gradient-Free Propagation Optimization Method for Cold Start Mitigation in Attribute Missing Graphs Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2501.00743
Missing attribute issues are prevalent in the graph learning, leading to biased outcomes in Graph Neural Networks (GNNs). Existing methods that rely on feature propagation are prone to cold start problem, particularly when dealing with attribute resetting and low-degree nodes, which hinder effective propagation and convergence. To address these challenges, we propose AttriReBoost (ARB), a novel method that incorporates propagation-based method to mitigate cold start problems in attribute-missing graphs. ARB enhances global feature propagation by redefining initial boundary conditions and strategically integrating virtual edges, thereby improving node connectivity and ensuring more stable and efficient convergence. This method facilitates gradient-free attribute reconstruction with lower computational overhead. The proposed method is theoretically grounded, with its convergence rigorously established. Extensive experiments on several real-world benchmark datasets demonstrate the effectiveness of ARB, achieving an average accuracy improvement of 5.11% over state-of-the-art methods. Additionally, ARB exhibits remarkable computational efficiency, processing a large-scale graph with 2.49 million nodes in just 16 seconds on a single GPU. Our code is available at https://github.com/limengran98/ARB.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2501.00743
- https://arxiv.org/pdf/2501.00743
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406032280
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406032280Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2501.00743Digital Object Identifier
- Title
-
AttriReBoost: A Gradient-Free Propagation Optimization Method for Cold Start Mitigation in Attribute Missing GraphsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Mengran Li, Chenwen Ding, Junzhou Chen, Wenqun Xing, Cong Ye, Ronghui Zhang, Songlin Zhuang, Jia Hu, Tony Z. Qiu, Huijun GaoList of authors in order
- Landing page
-
https://arxiv.org/abs/2501.00743Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2501.00743Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2501.00743Direct OA link when available
- Concepts
-
Mathematical optimization, Mathematics, Computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406032280 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2501.00743 |
| ids.doi | https://doi.org/10.48550/arxiv.2501.00743 |
| ids.openalex | https://openalex.org/W4406032280 |
| fwci | |
| type | preprint |
| title | AttriReBoost: A Gradient-Free Propagation Optimization Method for Cold Start Mitigation in Attribute Missing Graphs |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10714 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.986299991607666 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Software-Defined Networks and 5G |
| topics[1].id | https://openalex.org/T10847 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9794999957084656 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Advanced Optical Network Technologies |
| topics[2].id | https://openalex.org/T11478 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9790999889373779 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Caching and Content Delivery |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C126255220 |
| concepts[0].level | 1 |
| concepts[0].score | 0.37216776609420776 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[0].display_name | Mathematical optimization |
| concepts[1].id | https://openalex.org/C33923547 |
| concepts[1].level | 0 |
| concepts[1].score | 0.36121225357055664 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[1].display_name | Mathematics |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.35990795493125916 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| keywords[0].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[0].score | 0.37216776609420776 |
| keywords[0].display_name | Mathematical optimization |
| keywords[1].id | https://openalex.org/keywords/mathematics |
| keywords[1].score | 0.36121225357055664 |
| keywords[1].display_name | Mathematics |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.35990795493125916 |
| keywords[2].display_name | Computer science |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2501.00743 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2501.00743 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2501.00743 |
| locations[1].id | doi:10.48550/arxiv.2501.00743 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2501.00743 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5107885873 |
| authorships[0].author.orcid | https://orcid.org/0009-0002-3024-1545 |
| authorships[0].author.display_name | Mengran Li |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Li, Mengran |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5059807468 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9338-8352 |
| authorships[1].author.display_name | Chenwen Ding |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ding, Chaojun |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5003633670 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3388-3503 |
| authorships[2].author.display_name | Junzhou Chen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chen, Junzhou |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101924242 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1409-7574 |
| authorships[3].author.display_name | Wenqun Xing |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xing, Wenbin |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5064709035 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Cong Ye |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ye, Cong |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5029387407 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6107-4044 |
| authorships[5].author.display_name | Ronghui Zhang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Zhang, Ronghui |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5103848909 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-3072-0634 |
| authorships[6].author.display_name | Songlin Zhuang |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Zhuang, Songlin |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5059321263 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-5779-257X |
| authorships[7].author.display_name | Jia Hu |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Hu, Jia |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5055356431 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-6120-3619 |
| authorships[8].author.display_name | Tony Z. Qiu |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Qiu, Tony Z. |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5036684787 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-5554-5452 |
| authorships[9].author.display_name | Huijun Gao |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Gao, Huijun |
| authorships[9].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2501.00743 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-01-04T00:00:00 |
| display_name | AttriReBoost: A Gradient-Free Propagation Optimization Method for Cold Start Mitigation in Attribute Missing Graphs |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10714 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.986299991607666 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Software-Defined Networks and 5G |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W4391375266, https://openalex.org/W1979597421, https://openalex.org/W2007980826, https://openalex.org/W2061531152, https://openalex.org/W3002753104, https://openalex.org/W2077600819, https://openalex.org/W2142036596, https://openalex.org/W2072657027 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2501.00743 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2501.00743 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2501.00743 |
| primary_location.id | pmh:oai:arXiv.org:2501.00743 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2501.00743 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2501.00743 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 54, 145, 157 |
| abstract_inverted_index.16 | 154 |
| abstract_inverted_index.To | 46 |
| abstract_inverted_index.an | 129 |
| abstract_inverted_index.at | 164 |
| abstract_inverted_index.by | 74 |
| abstract_inverted_index.in | 5, 13, 66, 152 |
| abstract_inverted_index.is | 108, 162 |
| abstract_inverted_index.of | 126, 133 |
| abstract_inverted_index.on | 22, 118, 156 |
| abstract_inverted_index.to | 10, 27, 61 |
| abstract_inverted_index.we | 50 |
| abstract_inverted_index.ARB | 69, 139 |
| abstract_inverted_index.Our | 160 |
| abstract_inverted_index.The | 105 |
| abstract_inverted_index.and | 37, 44, 79, 88, 92 |
| abstract_inverted_index.are | 3, 25 |
| abstract_inverted_index.its | 112 |
| abstract_inverted_index.the | 6, 124 |
| abstract_inverted_index.2.49 | 149 |
| abstract_inverted_index.ARB, | 127 |
| abstract_inverted_index.GPU. | 159 |
| abstract_inverted_index.This | 95 |
| abstract_inverted_index.code | 161 |
| abstract_inverted_index.cold | 28, 63 |
| abstract_inverted_index.just | 153 |
| abstract_inverted_index.more | 90 |
| abstract_inverted_index.node | 86 |
| abstract_inverted_index.over | 135 |
| abstract_inverted_index.rely | 21 |
| abstract_inverted_index.that | 20, 57 |
| abstract_inverted_index.when | 32 |
| abstract_inverted_index.with | 34, 101, 111, 148 |
| abstract_inverted_index.5.11% | 134 |
| abstract_inverted_index.Graph | 14 |
| abstract_inverted_index.graph | 7, 147 |
| abstract_inverted_index.lower | 102 |
| abstract_inverted_index.nodes | 151 |
| abstract_inverted_index.novel | 55 |
| abstract_inverted_index.prone | 26 |
| abstract_inverted_index.start | 29, 64 |
| abstract_inverted_index.these | 48 |
| abstract_inverted_index.which | 40 |
| abstract_inverted_index.(ARB), | 53 |
| abstract_inverted_index.Neural | 15 |
| abstract_inverted_index.biased | 11 |
| abstract_inverted_index.edges, | 83 |
| abstract_inverted_index.global | 71 |
| abstract_inverted_index.hinder | 41 |
| abstract_inverted_index.issues | 2 |
| abstract_inverted_index.method | 56, 60, 96, 107 |
| abstract_inverted_index.nodes, | 39 |
| abstract_inverted_index.single | 158 |
| abstract_inverted_index.stable | 91 |
| abstract_inverted_index.(GNNs). | 17 |
| abstract_inverted_index.Missing | 0 |
| abstract_inverted_index.address | 47 |
| abstract_inverted_index.average | 130 |
| abstract_inverted_index.dealing | 33 |
| abstract_inverted_index.feature | 23, 72 |
| abstract_inverted_index.graphs. | 68 |
| abstract_inverted_index.initial | 76 |
| abstract_inverted_index.leading | 9 |
| abstract_inverted_index.methods | 19 |
| abstract_inverted_index.million | 150 |
| abstract_inverted_index.propose | 51 |
| abstract_inverted_index.seconds | 155 |
| abstract_inverted_index.several | 119 |
| abstract_inverted_index.thereby | 84 |
| abstract_inverted_index.virtual | 82 |
| abstract_inverted_index.Existing | 18 |
| abstract_inverted_index.Networks | 16 |
| abstract_inverted_index.accuracy | 131 |
| abstract_inverted_index.boundary | 77 |
| abstract_inverted_index.datasets | 122 |
| abstract_inverted_index.enhances | 70 |
| abstract_inverted_index.ensuring | 89 |
| abstract_inverted_index.exhibits | 140 |
| abstract_inverted_index.methods. | 137 |
| abstract_inverted_index.mitigate | 62 |
| abstract_inverted_index.outcomes | 12 |
| abstract_inverted_index.problem, | 30 |
| abstract_inverted_index.problems | 65 |
| abstract_inverted_index.proposed | 106 |
| abstract_inverted_index.Extensive | 116 |
| abstract_inverted_index.achieving | 128 |
| abstract_inverted_index.attribute | 1, 35, 99 |
| abstract_inverted_index.available | 163 |
| abstract_inverted_index.benchmark | 121 |
| abstract_inverted_index.effective | 42 |
| abstract_inverted_index.efficient | 93 |
| abstract_inverted_index.grounded, | 110 |
| abstract_inverted_index.improving | 85 |
| abstract_inverted_index.learning, | 8 |
| abstract_inverted_index.overhead. | 104 |
| abstract_inverted_index.prevalent | 4 |
| abstract_inverted_index.resetting | 36 |
| abstract_inverted_index.conditions | 78 |
| abstract_inverted_index.low-degree | 38 |
| abstract_inverted_index.processing | 144 |
| abstract_inverted_index.real-world | 120 |
| abstract_inverted_index.redefining | 75 |
| abstract_inverted_index.remarkable | 141 |
| abstract_inverted_index.rigorously | 114 |
| abstract_inverted_index.challenges, | 49 |
| abstract_inverted_index.convergence | 113 |
| abstract_inverted_index.demonstrate | 123 |
| abstract_inverted_index.efficiency, | 143 |
| abstract_inverted_index.experiments | 117 |
| abstract_inverted_index.facilitates | 97 |
| abstract_inverted_index.improvement | 132 |
| abstract_inverted_index.integrating | 81 |
| abstract_inverted_index.large-scale | 146 |
| abstract_inverted_index.propagation | 24, 43, 73 |
| abstract_inverted_index.AttriReBoost | 52 |
| abstract_inverted_index.connectivity | 87 |
| abstract_inverted_index.convergence. | 45, 94 |
| abstract_inverted_index.established. | 115 |
| abstract_inverted_index.incorporates | 58 |
| abstract_inverted_index.particularly | 31 |
| abstract_inverted_index.Additionally, | 138 |
| abstract_inverted_index.computational | 103, 142 |
| abstract_inverted_index.effectiveness | 125 |
| abstract_inverted_index.gradient-free | 98 |
| abstract_inverted_index.strategically | 80 |
| abstract_inverted_index.theoretically | 109 |
| abstract_inverted_index.reconstruction | 100 |
| abstract_inverted_index.state-of-the-art | 136 |
| abstract_inverted_index.attribute-missing | 67 |
| abstract_inverted_index.propagation-based | 59 |
| abstract_inverted_index.https://github.com/limengran98/ARB. | 165 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 10 |
| citation_normalized_percentile |