Audio-Based Automatic Giant Panda Behavior Recognition Using Competitive Fusion Learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/s25133878
Automated giant panda (Ailuropoda melanoleuca) behavior recognition (GPBR) systems are highly beneficial for efficiently monitoring giant pandas in wildlife conservation missions. While video-based behavior recognition attracts a lot of attention, few studies have focused on audio-based methods. In this paper, we propose the exploitation of the audio data recorded by collar-mounted devices on giant pandas for the purpose of GPBR. We construct a new benchmark audio dataset of giant pandas named abPanda-5 for GPBR, which consists of 18,930 samples from five giant panda individuals with five main behaviors. To fully explore the bioacoustic features, we propose an audio-based method for automatic GPBR using competitive fusion learning. The method improves behavior recognition accuracy and robustness, without additional computational overhead in the inference stage. Experiments performed on the abPanda-5 dataset demonstrate the feasibility and effectiveness of our proposed method.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s25133878
- https://www.mdpi.com/1424-8220/25/13/3878/pdf?version=1750507767
- OA Status
- gold
- References
- 34
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411568851
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411568851Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s25133878Digital Object Identifier
- Title
-
Audio-Based Automatic Giant Panda Behavior Recognition Using Competitive Fusion LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-21Full publication date if available
- Authors
-
Yuancheng Li, Yong Luo, Qijun Zhao, Mingchun Zhang, Yue Yang, Desheng LiList of authors in order
- Landing page
-
https://doi.org/10.3390/s25133878Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/25/13/3878/pdf?version=1750507767Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/25/13/3878/pdf?version=1750507767Direct OA link when available
- Concepts
-
Ailuropoda melanoleuca, Computer science, Robustness (evolution), Artificial intelligence, Benchmark (surveying), Inference, Machine learning, Feature extraction, Speech recognition, Pattern recognition (psychology), Geodesy, Geography, Chemistry, Gene, Biochemistry, Biology, EcologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
34Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411568851 |
|---|---|
| doi | https://doi.org/10.3390/s25133878 |
| ids.doi | https://doi.org/10.3390/s25133878 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40648138 |
| ids.openalex | https://openalex.org/W4411568851 |
| fwci | 0.0 |
| mesh[0].qualifier_ui | Q000502 |
| mesh[0].descriptor_ui | D001503 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | physiology |
| mesh[0].descriptor_name | Ursidae |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000818 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Animals |
| mesh[2].qualifier_ui | Q000502 |
| mesh[2].descriptor_ui | D001522 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | physiology |
| mesh[2].descriptor_name | Behavior, Animal |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D000069550 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Machine Learning |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000465 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Algorithms |
| mesh[5].qualifier_ui | Q000502 |
| mesh[5].descriptor_ui | D001503 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | physiology |
| mesh[5].descriptor_name | Ursidae |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000818 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Animals |
| mesh[7].qualifier_ui | Q000502 |
| mesh[7].descriptor_ui | D001522 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | physiology |
| mesh[7].descriptor_name | Behavior, Animal |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000069550 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Machine Learning |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000465 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Algorithms |
| mesh[10].qualifier_ui | Q000502 |
| mesh[10].descriptor_ui | D001503 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | physiology |
| mesh[10].descriptor_name | Ursidae |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D000818 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Animals |
| mesh[12].qualifier_ui | Q000502 |
| mesh[12].descriptor_ui | D001522 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | physiology |
| mesh[12].descriptor_name | Behavior, Animal |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D000069550 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Machine Learning |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D000465 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Algorithms |
| type | article |
| title | Audio-Based Automatic Giant Panda Behavior Recognition Using Competitive Fusion Learning |
| biblio.issue | 13 |
| biblio.volume | 25 |
| biblio.last_page | 3878 |
| biblio.first_page | 3878 |
| topics[0].id | https://openalex.org/T11665 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1309 |
| topics[0].subfield.display_name | Developmental Biology |
| topics[0].display_name | Animal Vocal Communication and Behavior |
| topics[1].id | https://openalex.org/T11309 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9976999759674072 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Music and Audio Processing |
| topics[2].id | https://openalex.org/T11228 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9850999712944031 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1105 |
| topics[2].subfield.display_name | Ecology, Evolution, Behavior and Systematics |
| topics[2].display_name | Bat Biology and Ecology Studies |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C2908694543 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9452155232429504 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q33602 |
| concepts[0].display_name | Ailuropoda melanoleuca |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6991912126541138 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C63479239 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6713016033172607 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[2].display_name | Robustness (evolution) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6153499484062195 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C185798385 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49656134843826294 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[4].display_name | Benchmark (surveying) |
| concepts[5].id | https://openalex.org/C2776214188 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4957633912563324 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[5].display_name | Inference |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4247044026851654 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C52622490 |
| concepts[7].level | 2 |
| concepts[7].score | 0.41810885071754456 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[7].display_name | Feature extraction |
| concepts[8].id | https://openalex.org/C28490314 |
| concepts[8].level | 1 |
| concepts[8].score | 0.38925901055336 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[8].display_name | Speech recognition |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.37666746973991394 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C13280743 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[10].display_name | Geodesy |
| concepts[11].id | https://openalex.org/C205649164 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[11].display_name | Geography |
| concepts[12].id | https://openalex.org/C185592680 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[12].display_name | Chemistry |
| concepts[13].id | https://openalex.org/C104317684 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[13].display_name | Gene |
| concepts[14].id | https://openalex.org/C55493867 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[14].display_name | Biochemistry |
| concepts[15].id | https://openalex.org/C86803240 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[15].display_name | Biology |
| concepts[16].id | https://openalex.org/C18903297 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[16].display_name | Ecology |
| keywords[0].id | https://openalex.org/keywords/ailuropoda-melanoleuca |
| keywords[0].score | 0.9452155232429504 |
| keywords[0].display_name | Ailuropoda melanoleuca |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6991912126541138 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/robustness |
| keywords[2].score | 0.6713016033172607 |
| keywords[2].display_name | Robustness (evolution) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6153499484062195 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/benchmark |
| keywords[4].score | 0.49656134843826294 |
| keywords[4].display_name | Benchmark (surveying) |
| keywords[5].id | https://openalex.org/keywords/inference |
| keywords[5].score | 0.4957633912563324 |
| keywords[5].display_name | Inference |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.4247044026851654 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/feature-extraction |
| keywords[7].score | 0.41810885071754456 |
| keywords[7].display_name | Feature extraction |
| keywords[8].id | https://openalex.org/keywords/speech-recognition |
| keywords[8].score | 0.38925901055336 |
| keywords[8].display_name | Speech recognition |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.37666746973991394 |
| keywords[9].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | doi:10.3390/s25133878 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/25/13/3878/pdf?version=1750507767 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s25133878 |
| locations[1].id | pmid:40648138 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40648138 |
| locations[2].id | pmh:oai:doaj.org/article:da907da9f6f148d693f70acb523c7e3e |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 25, Iss 13, p 3878 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/da907da9f6f148d693f70acb523c7e3e |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12251558 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors (Basel) |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12251558 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5111223091 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7886-5723 |
| authorships[0].author.display_name | Yuancheng Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Computer Science, Sichuan University, Chengdu 610065, China |
| authorships[0].institutions[0].id | https://openalex.org/I24185976 |
| authorships[0].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Sichuan University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yuancheng Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Computer Science, Sichuan University, Chengdu 610065, China |
| authorships[1].author.id | https://openalex.org/A5039158745 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2296-6370 |
| authorships[1].author.display_name | Yong Luo |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I2801871972, https://openalex.org/I4210134523 |
| authorships[1].affiliations[0].raw_affiliation_string | State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Chengdu 611830, China |
| authorships[1].institutions[0].id | https://openalex.org/I2801871972 |
| authorships[1].institutions[0].ror | https://ror.org/0168fvh11 |
| authorships[1].institutions[0].type | nonprofit |
| authorships[1].institutions[0].lineage | https://openalex.org/I2801871972 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Chengdu Research Base of Giant Panda Breeding |
| authorships[1].institutions[1].id | https://openalex.org/I4210134523 |
| authorships[1].institutions[1].ror | https://ror.org/03f2n3n81 |
| authorships[1].institutions[1].type | government |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210134523 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | State Forestry and Grassland Administration |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yong Luo |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Chengdu 611830, China |
| authorships[2].author.id | https://openalex.org/A5085914001 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4651-7163 |
| authorships[2].author.display_name | Qijun Zhao |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[2].affiliations[0].raw_affiliation_string | National Key Laboratory of Fundamental Science on Synthetic Vision, Sichuan University, Chengdu 610065, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I24185976 |
| authorships[2].affiliations[1].raw_affiliation_string | College of Computer Science, Sichuan University, Chengdu 610065, China |
| authorships[2].institutions[0].id | https://openalex.org/I24185976 |
| authorships[2].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Sichuan University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Qijun Zhao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Computer Science, Sichuan University, Chengdu 610065, China, National Key Laboratory of Fundamental Science on Synthetic Vision, Sichuan University, Chengdu 610065, China |
| authorships[3].author.id | https://openalex.org/A5102800264 |
| authorships[3].author.orcid | https://orcid.org/0009-0000-5924-1392 |
| authorships[3].author.display_name | Mingchun Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I2801871972, https://openalex.org/I4210134523 |
| authorships[3].affiliations[0].raw_affiliation_string | State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Chengdu 611830, China |
| authorships[3].institutions[0].id | https://openalex.org/I2801871972 |
| authorships[3].institutions[0].ror | https://ror.org/0168fvh11 |
| authorships[3].institutions[0].type | nonprofit |
| authorships[3].institutions[0].lineage | https://openalex.org/I2801871972 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Chengdu Research Base of Giant Panda Breeding |
| authorships[3].institutions[1].id | https://openalex.org/I4210134523 |
| authorships[3].institutions[1].ror | https://ror.org/03f2n3n81 |
| authorships[3].institutions[1].type | government |
| authorships[3].institutions[1].lineage | https://openalex.org/I4210134523 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | State Forestry and Grassland Administration |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Mingchun Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Chengdu 611830, China |
| authorships[4].author.id | https://openalex.org/A5115593943 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8270-9464 |
| authorships[4].author.display_name | Yue Yang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Computer Science, Sichuan University, Chengdu 610065, China |
| authorships[4].institutions[0].id | https://openalex.org/I24185976 |
| authorships[4].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Sichuan University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yue Yang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Computer Science, Sichuan University, Chengdu 610065, China |
| authorships[5].author.id | https://openalex.org/A5100770496 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5368-2242 |
| authorships[5].author.display_name | Desheng Li |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I2801871972, https://openalex.org/I4210134523 |
| authorships[5].affiliations[0].raw_affiliation_string | State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Chengdu 611830, China |
| authorships[5].institutions[0].id | https://openalex.org/I2801871972 |
| authorships[5].institutions[0].ror | https://ror.org/0168fvh11 |
| authorships[5].institutions[0].type | nonprofit |
| authorships[5].institutions[0].lineage | https://openalex.org/I2801871972 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Chengdu Research Base of Giant Panda Breeding |
| authorships[5].institutions[1].id | https://openalex.org/I4210134523 |
| authorships[5].institutions[1].ror | https://ror.org/03f2n3n81 |
| authorships[5].institutions[1].type | government |
| authorships[5].institutions[1].lineage | https://openalex.org/I4210134523 |
| authorships[5].institutions[1].country_code | CN |
| authorships[5].institutions[1].display_name | State Forestry and Grassland Administration |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Desheng Li |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Chengdu 611830, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/25/13/3878/pdf?version=1750507767 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Audio-Based Automatic Giant Panda Behavior Recognition Using Competitive Fusion Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11665 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1309 |
| primary_topic.subfield.display_name | Developmental Biology |
| primary_topic.display_name | Animal Vocal Communication and Behavior |
| related_works | https://openalex.org/W3155625410, https://openalex.org/W4236888428, https://openalex.org/W3134189156, https://openalex.org/W4366158542, https://openalex.org/W2176913539, https://openalex.org/W4391808106, https://openalex.org/W2133838389, https://openalex.org/W4253113981, https://openalex.org/W4207066491, https://openalex.org/W1996690921 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/s25133878 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/25/13/3878/pdf?version=1750507767 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s25133878 |
| primary_location.id | doi:10.3390/s25133878 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/25/13/3878/pdf?version=1750507767 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s25133878 |
| publication_date | 2025-06-21 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2768840352, https://openalex.org/W2951640527, https://openalex.org/W1600425442, https://openalex.org/W6790621489, https://openalex.org/W4401891493, https://openalex.org/W2925266590, https://openalex.org/W2894955409, https://openalex.org/W4307992680, https://openalex.org/W4383550595, https://openalex.org/W6839705760, https://openalex.org/W4306964484, https://openalex.org/W4385200036, https://openalex.org/W6783802061, https://openalex.org/W3134132750, https://openalex.org/W2508079521, https://openalex.org/W2086273365, https://openalex.org/W4200599724, https://openalex.org/W6807389081, https://openalex.org/W2194775991, https://openalex.org/W2295107390, https://openalex.org/W2954765307, https://openalex.org/W3208743843, https://openalex.org/W1680392829, https://openalex.org/W2982083293, https://openalex.org/W2883780447, https://openalex.org/W6793164127, https://openalex.org/W2549139847, https://openalex.org/W4221095487, https://openalex.org/W2963163009, https://openalex.org/W2946948417, https://openalex.org/W3091942604, https://openalex.org/W4206923831, https://openalex.org/W4282982551, https://openalex.org/W3130962684 |
| referenced_works_count | 34 |
| abstract_inverted_index.a | 26, 62 |
| abstract_inverted_index.In | 37 |
| abstract_inverted_index.To | 88 |
| abstract_inverted_index.We | 60 |
| abstract_inverted_index.an | 96 |
| abstract_inverted_index.by | 49 |
| abstract_inverted_index.in | 17, 118 |
| abstract_inverted_index.of | 28, 44, 58, 67, 76, 133 |
| abstract_inverted_index.on | 34, 52, 124 |
| abstract_inverted_index.we | 40, 94 |
| abstract_inverted_index.The | 106 |
| abstract_inverted_index.and | 112, 131 |
| abstract_inverted_index.are | 9 |
| abstract_inverted_index.few | 30 |
| abstract_inverted_index.for | 12, 55, 72, 99 |
| abstract_inverted_index.lot | 27 |
| abstract_inverted_index.new | 63 |
| abstract_inverted_index.our | 134 |
| abstract_inverted_index.the | 42, 45, 56, 91, 119, 125, 129 |
| abstract_inverted_index.GPBR | 101 |
| abstract_inverted_index.data | 47 |
| abstract_inverted_index.five | 80, 85 |
| abstract_inverted_index.from | 79 |
| abstract_inverted_index.have | 32 |
| abstract_inverted_index.main | 86 |
| abstract_inverted_index.this | 38 |
| abstract_inverted_index.with | 84 |
| abstract_inverted_index.GPBR, | 73 |
| abstract_inverted_index.GPBR. | 59 |
| abstract_inverted_index.While | 21 |
| abstract_inverted_index.audio | 46, 65 |
| abstract_inverted_index.fully | 89 |
| abstract_inverted_index.giant | 1, 15, 53, 68, 81 |
| abstract_inverted_index.named | 70 |
| abstract_inverted_index.panda | 2, 82 |
| abstract_inverted_index.using | 102 |
| abstract_inverted_index.which | 74 |
| abstract_inverted_index.(GPBR) | 7 |
| abstract_inverted_index.18,930 | 77 |
| abstract_inverted_index.fusion | 104 |
| abstract_inverted_index.highly | 10 |
| abstract_inverted_index.method | 98, 107 |
| abstract_inverted_index.pandas | 16, 54, 69 |
| abstract_inverted_index.paper, | 39 |
| abstract_inverted_index.stage. | 121 |
| abstract_inverted_index.dataset | 66, 127 |
| abstract_inverted_index.devices | 51 |
| abstract_inverted_index.explore | 90 |
| abstract_inverted_index.focused | 33 |
| abstract_inverted_index.method. | 136 |
| abstract_inverted_index.propose | 41, 95 |
| abstract_inverted_index.purpose | 57 |
| abstract_inverted_index.samples | 78 |
| abstract_inverted_index.studies | 31 |
| abstract_inverted_index.systems | 8 |
| abstract_inverted_index.without | 114 |
| abstract_inverted_index.accuracy | 111 |
| abstract_inverted_index.attracts | 25 |
| abstract_inverted_index.behavior | 5, 23, 109 |
| abstract_inverted_index.consists | 75 |
| abstract_inverted_index.improves | 108 |
| abstract_inverted_index.methods. | 36 |
| abstract_inverted_index.overhead | 117 |
| abstract_inverted_index.proposed | 135 |
| abstract_inverted_index.recorded | 48 |
| abstract_inverted_index.wildlife | 18 |
| abstract_inverted_index.Automated | 0 |
| abstract_inverted_index.abPanda-5 | 71, 126 |
| abstract_inverted_index.automatic | 100 |
| abstract_inverted_index.benchmark | 64 |
| abstract_inverted_index.construct | 61 |
| abstract_inverted_index.features, | 93 |
| abstract_inverted_index.inference | 120 |
| abstract_inverted_index.learning. | 105 |
| abstract_inverted_index.missions. | 20 |
| abstract_inverted_index.performed | 123 |
| abstract_inverted_index.additional | 115 |
| abstract_inverted_index.attention, | 29 |
| abstract_inverted_index.behaviors. | 87 |
| abstract_inverted_index.beneficial | 11 |
| abstract_inverted_index.monitoring | 14 |
| abstract_inverted_index.(Ailuropoda | 3 |
| abstract_inverted_index.Experiments | 122 |
| abstract_inverted_index.audio-based | 35, 97 |
| abstract_inverted_index.bioacoustic | 92 |
| abstract_inverted_index.competitive | 103 |
| abstract_inverted_index.demonstrate | 128 |
| abstract_inverted_index.efficiently | 13 |
| abstract_inverted_index.feasibility | 130 |
| abstract_inverted_index.individuals | 83 |
| abstract_inverted_index.recognition | 6, 24, 110 |
| abstract_inverted_index.robustness, | 113 |
| abstract_inverted_index.video-based | 22 |
| abstract_inverted_index.conservation | 19 |
| abstract_inverted_index.exploitation | 43 |
| abstract_inverted_index.melanoleuca) | 4 |
| abstract_inverted_index.computational | 116 |
| abstract_inverted_index.effectiveness | 132 |
| abstract_inverted_index.collar-mounted | 50 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.7099999785423279 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.25404802 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |