Augmenting mortality prediction with medication data and machine learning models Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1101/2024.04.16.24305420
Background In critically ill patients, complex relationships exist among patient disease factors, medication management, and mortality. Considering the potential for nonlinear relationships and the high dimensionality of medication data, machine learning and advanced regression methods may offer advantages over traditional regression techniques. The purpose of this study was to evaluate the role of different modeling approaches incorporating medication data for mortality prediction. Methods This was a single-center, observational cohort study of critically ill adults. A random sample of 991 adults admitted ≥ 24 hours to the intensive care unit (ICU) from 10/2015 to 10/2020 were included. Models to predict hospital mortality at discharge were created. Models were externally validated against a temporally separate dataset of 4,878 patients. Potential mortality predictor variables (n=27, together with 14 indicators for missingness) were collected at baseline (age, sex, service, diagnosis) and 24 hours (illness severity, supportive care use, fluid balance, laboratory values, MRC-ICU score, and vasopressor use) and included in all models. The optimal traditional (equipped with linear predictors) logistic regression model and optimal advanced (equipped with nature splines, smoothing splines, and local linearity) logistic regression models were created using stepwise selection by Bayesian information criterion (BIC). Supervised, classification-based ML models [e.g., Random Forest, Support Vector Machine (SVM), and XGBoost] were developed. Area under the receiver operating characteristic (AUROC), positive predictive value (PPV), and negative predictive value (NPV) were compared among different mortality prediction models. Results A model including MRC-ICU in addition to SOFA and APACHE II demonstrated an AUROC of 0.83 for hospital mortality prediction, compared to AUROCs of 0.72 and 0.81 for APACHE II and SOFA alone. Machine learning models based on Random Forest, SVM, and XGBoost demonstrated AUROCs of 0.83, 0.85, and 0.82, respectively. Accuracy of traditional regression models was similar to that of machine learning models. MRC-ICU demonstrated a moderate level of feature importance in both XGBoost and Random Forest. Across all ten models, performance was lower on the validation set. Conclusions While medication data were not included as a significant predictor in regression models, addition of MRC-ICU to severity of illness scores (APACHE II and SOFA) improved AUROC for mortality prediction. Machine learning methods did not improve model performance relative to traditional regression methods.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2024.04.16.24305420
- https://www.medrxiv.org/content/medrxiv/early/2024/04/19/2024.04.16.24305420.full.pdf
- OA Status
- green
- Cited By
- 2
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394950810
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394950810Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2024.04.16.24305420Digital Object Identifier
- Title
-
Augmenting mortality prediction with medication data and machine learning modelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-04-19Full publication date if available
- Authors
-
Brian Murray, Tianyi Zhang, Amoreena Most, Xianyan Chen, Susan Smith, John W. Devlin, David J. Murphy, Andrea Sikora, Rishikesan KamaleswaranList of authors in order
- Landing page
-
https://doi.org/10.1101/2024.04.16.24305420Publisher landing page
- PDF URL
-
https://www.medrxiv.org/content/medrxiv/early/2024/04/19/2024.04.16.24305420.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.medrxiv.org/content/medrxiv/early/2024/04/19/2024.04.16.24305420.full.pdfDirect OA link when available
- Concepts
-
Computer science, Machine learning, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394950810 |
|---|---|
| doi | https://doi.org/10.1101/2024.04.16.24305420 |
| ids.doi | https://doi.org/10.1101/2024.04.16.24305420 |
| ids.openalex | https://openalex.org/W4394950810 |
| fwci | 1.2775571 |
| type | preprint |
| title | Augmenting mortality prediction with medication data and machine learning models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13702 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9940000176429749 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning in Healthcare |
| topics[1].id | https://openalex.org/T11396 |
| topics[1].field.id | https://openalex.org/fields/36 |
| topics[1].field.display_name | Health Professions |
| topics[1].score | 0.9199000000953674 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3605 |
| topics[1].subfield.display_name | Health Information Management |
| topics[1].display_name | Artificial Intelligence in Healthcare |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5495567917823792 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C119857082 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5398731231689453 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[1].display_name | Machine learning |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5083116888999939 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5495567917823792 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/machine-learning |
| keywords[1].score | 0.5398731231689453 |
| keywords[1].display_name | Machine learning |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5083116888999939 |
| keywords[2].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1101/2024.04.16.24305420 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.medrxiv.org/content/medrxiv/early/2024/04/19/2024.04.16.24305420.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2024.04.16.24305420 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5004142324 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6660-9749 |
| authorships[0].author.display_name | Brian Murray |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I6750721 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Colorado Skaggs School of Pharmacy |
| authorships[0].institutions[0].id | https://openalex.org/I6750721 |
| authorships[0].institutions[0].ror | https://ror.org/0078xmk34 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I6750721 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Montana |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Brian Murray |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Colorado Skaggs School of Pharmacy |
| authorships[1].author.id | https://openalex.org/A5100437453 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5468-9347 |
| authorships[1].author.display_name | Tianyi Zhang |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I165733156, https://openalex.org/I904372625 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Georgia Franklin College of Arts and Sciences, Department of Statistics, Athens, GA, USA |
| authorships[1].institutions[0].id | https://openalex.org/I904372625 |
| authorships[1].institutions[0].ror | https://ror.org/05w35s747 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I904372625 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Franklin College |
| authorships[1].institutions[1].id | https://openalex.org/I165733156 |
| authorships[1].institutions[1].ror | https://ror.org/00te3t702 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I165733156 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | University of Georgia |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tianyi Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Georgia Franklin College of Arts and Sciences, Department of Statistics, Athens, GA, USA |
| authorships[2].author.id | https://openalex.org/A5094240221 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1958-5374 |
| authorships[2].author.display_name | Amoreena Most |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Amoreena Most |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5036423721 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1806-0883 |
| authorships[3].author.display_name | Xianyan Chen |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I165733156, https://openalex.org/I904372625 |
| authorships[3].affiliations[0].raw_affiliation_string | University of Georgia Franklin College of Arts and Sciences, Department of Statistics, Athens, GA, USA |
| authorships[3].institutions[0].id | https://openalex.org/I904372625 |
| authorships[3].institutions[0].ror | https://ror.org/05w35s747 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I904372625 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Franklin College |
| authorships[3].institutions[1].id | https://openalex.org/I165733156 |
| authorships[3].institutions[1].ror | https://ror.org/00te3t702 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I165733156 |
| authorships[3].institutions[1].country_code | US |
| authorships[3].institutions[1].display_name | University of Georgia |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xianyan Chen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of Georgia Franklin College of Arts and Sciences, Department of Statistics, Athens, GA, USA |
| authorships[4].author.id | https://openalex.org/A5000360960 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5171-8405 |
| authorships[4].author.display_name | Susan Smith |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I138220800, https://openalex.org/I165733156 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, Athens, GA, USA |
| authorships[4].institutions[0].id | https://openalex.org/I138220800 |
| authorships[4].institutions[0].ror | https://ror.org/05kr7zx86 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I138220800 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Georgia College & State University |
| authorships[4].institutions[1].id | https://openalex.org/I165733156 |
| authorships[4].institutions[1].ror | https://ror.org/00te3t702 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I165733156 |
| authorships[4].institutions[1].country_code | US |
| authorships[4].institutions[1].display_name | University of Georgia |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Susan E. Smith |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, Athens, GA, USA |
| authorships[5].author.id | https://openalex.org/A5014524643 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-1751-9012 |
| authorships[5].author.display_name | John W. Devlin |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I12912129 |
| authorships[5].affiliations[0].raw_affiliation_string | Bouve College of Health Sciences, Northeastern University, Boston, MA, USA |
| authorships[5].institutions[0].id | https://openalex.org/I12912129 |
| authorships[5].institutions[0].ror | https://ror.org/04t5xt781 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I12912129 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Northeastern University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | John W. Devlin |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Bouve College of Health Sciences, Northeastern University, Boston, MA, USA |
| authorships[6].author.id | https://openalex.org/A5101886882 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-1453-4404 |
| authorships[6].author.display_name | David J. Murphy |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I150468666 |
| authorships[6].affiliations[0].raw_affiliation_string | Emory University |
| authorships[6].institutions[0].id | https://openalex.org/I150468666 |
| authorships[6].institutions[0].ror | https://ror.org/03czfpz43 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I150468666 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Emory University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | David J. Murphy |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Emory University |
| authorships[7].author.id | https://openalex.org/A5006998717 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-2020-0571 |
| authorships[7].author.display_name | Andrea Sikora |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I170897317 |
| authorships[7].affiliations[0].raw_affiliation_string | Duke University |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I138220800, https://openalex.org/I165733156 |
| authorships[7].affiliations[1].raw_affiliation_string | Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, Athens, GA, USA |
| authorships[7].affiliations[2].institution_ids | https://openalex.org/I138220800, https://openalex.org/I165733156, https://openalex.org/I25041050 |
| authorships[7].affiliations[2].raw_affiliation_string | University of Georgia College of Pharmacy, Department of Clinical and Administrative Pharmacy, Augusta, GA, USA |
| authorships[7].affiliations[3].institution_ids | https://openalex.org/I6750721 |
| authorships[7].affiliations[3].raw_affiliation_string | University of Colorado Skaggs School of Pharmacy |
| authorships[7].affiliations[4].institution_ids | https://openalex.org/I1283280774 |
| authorships[7].affiliations[4].raw_affiliation_string | Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA |
| authorships[7].affiliations[5].institution_ids | https://openalex.org/I150468666 |
| authorships[7].affiliations[5].raw_affiliation_string | Emory University School of Medicine, Department of Pulmonary, Allergy, Critical Care and Sleep Medicine, Atlanta, GA, USA |
| authorships[7].affiliations[6].institution_ids | https://openalex.org/I165733156, https://openalex.org/I904372625 |
| authorships[7].affiliations[6].raw_affiliation_string | University of Georgia Franklin College of Arts and Sciences, Department of Statistics, Athens, GA, USA |
| authorships[7].affiliations[7].institution_ids | https://openalex.org/I138220800, https://openalex.org/I165733156 |
| authorships[7].affiliations[7].raw_affiliation_string | University of Georgia College of Pharmacy |
| authorships[7].affiliations[8].institution_ids | https://openalex.org/I12912129 |
| authorships[7].affiliations[8].raw_affiliation_string | Bouve College of Health Sciences, Northeastern University, Boston, MA, USA |
| authorships[7].institutions[0].id | https://openalex.org/I25041050 |
| authorships[7].institutions[0].ror | https://ror.org/012mef835 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I25041050 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Augusta University |
| authorships[7].institutions[1].id | https://openalex.org/I1283280774 |
| authorships[7].institutions[1].ror | https://ror.org/04b6nzv94 |
| authorships[7].institutions[1].type | healthcare |
| authorships[7].institutions[1].lineage | https://openalex.org/I1283280774, https://openalex.org/I48633490 |
| authorships[7].institutions[1].country_code | US |
| authorships[7].institutions[1].display_name | Brigham and Women's Hospital |
| authorships[7].institutions[2].id | https://openalex.org/I170897317 |
| authorships[7].institutions[2].ror | https://ror.org/00py81415 |
| authorships[7].institutions[2].type | education |
| authorships[7].institutions[2].lineage | https://openalex.org/I170897317 |
| authorships[7].institutions[2].country_code | US |
| authorships[7].institutions[2].display_name | Duke University |
| authorships[7].institutions[3].id | https://openalex.org/I150468666 |
| authorships[7].institutions[3].ror | https://ror.org/03czfpz43 |
| authorships[7].institutions[3].type | education |
| authorships[7].institutions[3].lineage | https://openalex.org/I150468666 |
| authorships[7].institutions[3].country_code | US |
| authorships[7].institutions[3].display_name | Emory University |
| authorships[7].institutions[4].id | https://openalex.org/I904372625 |
| authorships[7].institutions[4].ror | https://ror.org/05w35s747 |
| authorships[7].institutions[4].type | education |
| authorships[7].institutions[4].lineage | https://openalex.org/I904372625 |
| authorships[7].institutions[4].country_code | US |
| authorships[7].institutions[4].display_name | Franklin College |
| authorships[7].institutions[5].id | https://openalex.org/I138220800 |
| authorships[7].institutions[5].ror | https://ror.org/05kr7zx86 |
| authorships[7].institutions[5].type | education |
| authorships[7].institutions[5].lineage | https://openalex.org/I138220800 |
| authorships[7].institutions[5].country_code | US |
| authorships[7].institutions[5].display_name | Georgia College & State University |
| authorships[7].institutions[6].id | https://openalex.org/I12912129 |
| authorships[7].institutions[6].ror | https://ror.org/04t5xt781 |
| authorships[7].institutions[6].type | education |
| authorships[7].institutions[6].lineage | https://openalex.org/I12912129 |
| authorships[7].institutions[6].country_code | US |
| authorships[7].institutions[6].display_name | Northeastern University |
| authorships[7].institutions[7].id | https://openalex.org/I165733156 |
| authorships[7].institutions[7].ror | https://ror.org/00te3t702 |
| authorships[7].institutions[7].type | education |
| authorships[7].institutions[7].lineage | https://openalex.org/I165733156 |
| authorships[7].institutions[7].country_code | US |
| authorships[7].institutions[7].display_name | University of Georgia |
| authorships[7].institutions[8].id | https://openalex.org/I6750721 |
| authorships[7].institutions[8].ror | https://ror.org/0078xmk34 |
| authorships[7].institutions[8].type | education |
| authorships[7].institutions[8].lineage | https://openalex.org/I6750721 |
| authorships[7].institutions[8].country_code | US |
| authorships[7].institutions[8].display_name | University of Montana |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Andrea Sikora |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Bouve College of Health Sciences, Northeastern University, Boston, MA, USA, Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, Athens, GA, USA, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA, Duke University, Emory University School of Medicine, Department of Pulmonary, Allergy, Critical Care and Sleep Medicine, Atlanta, GA, USA, University of Colorado Skaggs School of Pharmacy, University of Georgia College of Pharmacy, University of Georgia College of Pharmacy, Department of Clinical and Administrative Pharmacy, Augusta, GA, USA, University of Georgia Franklin College of Arts and Sciences, Department of Statistics, Athens, GA, USA |
| authorships[8].author.id | https://openalex.org/A5012511062 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-8366-4811 |
| authorships[8].author.display_name | Rishikesan Kamaleswaran |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I170897317 |
| authorships[8].affiliations[0].raw_affiliation_string | Duke University |
| authorships[8].institutions[0].id | https://openalex.org/I170897317 |
| authorships[8].institutions[0].ror | https://ror.org/00py81415 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I170897317 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | Duke University |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Rishikesan Kamaleswaran |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Duke University |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.medrxiv.org/content/medrxiv/early/2024/04/19/2024.04.16.24305420.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Augmenting mortality prediction with medication data and machine learning models |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13702 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9940000176429749 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning in Healthcare |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3107602296, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W4283697347, https://openalex.org/W4210805261 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2024.04.16.24305420 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2024/04/19/2024.04.16.24305420.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2024.04.16.24305420 |
| primary_location.id | doi:10.1101/2024.04.16.24305420 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2024/04/19/2024.04.16.24305420.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2024.04.16.24305420 |
| publication_date | 2024-04-19 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4377818895, https://openalex.org/W2079215577, https://openalex.org/W2046932936, https://openalex.org/W2946454496, https://openalex.org/W3108854160, https://openalex.org/W2006890355, https://openalex.org/W2016653818, https://openalex.org/W4294457161, https://openalex.org/W4388563349, https://openalex.org/W4386851822, https://openalex.org/W4383187411, https://openalex.org/W4388024269, https://openalex.org/W4388452295, https://openalex.org/W4381598428, https://openalex.org/W2111132890, https://openalex.org/W3134180982, https://openalex.org/W4382198737, https://openalex.org/W2059796825, https://openalex.org/W3136552952, https://openalex.org/W2063653500, https://openalex.org/W2295598076, https://openalex.org/W4239510810, https://openalex.org/W1930624869, https://openalex.org/W2995264312, https://openalex.org/W2027888996, https://openalex.org/W2107869022, https://openalex.org/W2392954647, https://openalex.org/W2150765167, https://openalex.org/W4386317080, https://openalex.org/W2011861268, https://openalex.org/W4392811590, https://openalex.org/W2944058558, https://openalex.org/W4281741214, https://openalex.org/W4290940005, https://openalex.org/W4200484538, https://openalex.org/W3135666699, https://openalex.org/W3087491463, https://openalex.org/W2913997948 |
| referenced_works_count | 38 |
| abstract_inverted_index.A | 75, 233 |
| abstract_inverted_index.a | 66, 111, 299, 330 |
| abstract_inverted_index.14 | 125 |
| abstract_inverted_index.24 | 83, 138 |
| abstract_inverted_index.II | 243, 262, 345 |
| abstract_inverted_index.In | 2 |
| abstract_inverted_index.ML | 196 |
| abstract_inverted_index.an | 245 |
| abstract_inverted_index.as | 329 |
| abstract_inverted_index.at | 102, 131 |
| abstract_inverted_index.by | 189 |
| abstract_inverted_index.in | 156, 237, 305, 333 |
| abstract_inverted_index.of | 27, 45, 53, 71, 78, 115, 247, 256, 278, 285, 293, 302, 337, 341 |
| abstract_inverted_index.on | 270, 318 |
| abstract_inverted_index.to | 49, 85, 93, 98, 239, 254, 291, 339, 362 |
| abstract_inverted_index.991 | 79 |
| abstract_inverted_index.The | 43, 159 |
| abstract_inverted_index.all | 157, 312 |
| abstract_inverted_index.and | 15, 23, 32, 137, 151, 154, 169, 178, 205, 220, 241, 258, 263, 274, 281, 308, 346 |
| abstract_inverted_index.did | 356 |
| abstract_inverted_index.for | 20, 60, 127, 249, 260, 350 |
| abstract_inverted_index.ill | 4, 73 |
| abstract_inverted_index.may | 36 |
| abstract_inverted_index.not | 327, 357 |
| abstract_inverted_index.ten | 313 |
| abstract_inverted_index.the | 18, 24, 51, 86, 211, 319 |
| abstract_inverted_index.was | 48, 65, 289, 316 |
| abstract_inverted_index.≥ | 82 |
| abstract_inverted_index.0.72 | 257 |
| abstract_inverted_index.0.81 | 259 |
| abstract_inverted_index.0.83 | 248 |
| abstract_inverted_index.Area | 209 |
| abstract_inverted_index.SOFA | 240, 264 |
| abstract_inverted_index.SVM, | 273 |
| abstract_inverted_index.This | 64 |
| abstract_inverted_index.both | 306 |
| abstract_inverted_index.care | 88, 143 |
| abstract_inverted_index.data | 59, 325 |
| abstract_inverted_index.from | 91 |
| abstract_inverted_index.high | 25 |
| abstract_inverted_index.over | 39 |
| abstract_inverted_index.role | 52 |
| abstract_inverted_index.set. | 321 |
| abstract_inverted_index.sex, | 134 |
| abstract_inverted_index.that | 292 |
| abstract_inverted_index.this | 46 |
| abstract_inverted_index.unit | 89 |
| abstract_inverted_index.use) | 153 |
| abstract_inverted_index.use, | 144 |
| abstract_inverted_index.were | 95, 104, 107, 129, 184, 207, 225, 326 |
| abstract_inverted_index.with | 124, 163, 173 |
| abstract_inverted_index.(ICU) | 90 |
| abstract_inverted_index.(NPV) | 224 |
| abstract_inverted_index.(age, | 133 |
| abstract_inverted_index.0.82, | 282 |
| abstract_inverted_index.0.83, | 279 |
| abstract_inverted_index.0.85, | 280 |
| abstract_inverted_index.4,878 | 116 |
| abstract_inverted_index.AUROC | 246, 349 |
| abstract_inverted_index.SOFA) | 347 |
| abstract_inverted_index.While | 323 |
| abstract_inverted_index.among | 9, 227 |
| abstract_inverted_index.based | 269 |
| abstract_inverted_index.data, | 29 |
| abstract_inverted_index.exist | 8 |
| abstract_inverted_index.fluid | 145 |
| abstract_inverted_index.hours | 84, 139 |
| abstract_inverted_index.level | 301 |
| abstract_inverted_index.local | 179 |
| abstract_inverted_index.lower | 317 |
| abstract_inverted_index.model | 168, 234, 359 |
| abstract_inverted_index.offer | 37 |
| abstract_inverted_index.study | 47, 70 |
| abstract_inverted_index.under | 210 |
| abstract_inverted_index.using | 186 |
| abstract_inverted_index.value | 218, 223 |
| abstract_inverted_index.(BIC). | 193 |
| abstract_inverted_index.(PPV), | 219 |
| abstract_inverted_index.(SVM), | 204 |
| abstract_inverted_index.(n=27, | 122 |
| abstract_inverted_index.APACHE | 242, 261 |
| abstract_inverted_index.AUROCs | 255, 277 |
| abstract_inverted_index.Across | 311 |
| abstract_inverted_index.Models | 97, 106 |
| abstract_inverted_index.Random | 199, 271, 309 |
| abstract_inverted_index.Vector | 202 |
| abstract_inverted_index.[e.g., | 198 |
| abstract_inverted_index.adults | 80 |
| abstract_inverted_index.alone. | 265 |
| abstract_inverted_index.cohort | 69 |
| abstract_inverted_index.linear | 164 |
| abstract_inverted_index.models | 183, 197, 268, 288 |
| abstract_inverted_index.nature | 174 |
| abstract_inverted_index.random | 76 |
| abstract_inverted_index.sample | 77 |
| abstract_inverted_index.score, | 150 |
| abstract_inverted_index.scores | 343 |
| abstract_inverted_index.(APACHE | 344 |
| abstract_inverted_index.10/2015 | 92 |
| abstract_inverted_index.10/2020 | 94 |
| abstract_inverted_index.Forest, | 200, 272 |
| abstract_inverted_index.Forest. | 310 |
| abstract_inverted_index.MRC-ICU | 149, 236, 297, 338 |
| abstract_inverted_index.Machine | 203, 266, 353 |
| abstract_inverted_index.Methods | 63 |
| abstract_inverted_index.Results | 232 |
| abstract_inverted_index.Support | 201 |
| abstract_inverted_index.XGBoost | 275, 307 |
| abstract_inverted_index.adults. | 74 |
| abstract_inverted_index.against | 110 |
| abstract_inverted_index.complex | 6 |
| abstract_inverted_index.created | 185 |
| abstract_inverted_index.dataset | 114 |
| abstract_inverted_index.disease | 11 |
| abstract_inverted_index.feature | 303 |
| abstract_inverted_index.illness | 342 |
| abstract_inverted_index.improve | 358 |
| abstract_inverted_index.machine | 30, 294 |
| abstract_inverted_index.methods | 35, 355 |
| abstract_inverted_index.models, | 314, 335 |
| abstract_inverted_index.models. | 158, 231, 296 |
| abstract_inverted_index.optimal | 160, 170 |
| abstract_inverted_index.patient | 10 |
| abstract_inverted_index.predict | 99 |
| abstract_inverted_index.purpose | 44 |
| abstract_inverted_index.similar | 290 |
| abstract_inverted_index.values, | 148 |
| abstract_inverted_index.(AUROC), | 215 |
| abstract_inverted_index.(illness | 140 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Accuracy | 284 |
| abstract_inverted_index.Bayesian | 190 |
| abstract_inverted_index.XGBoost] | 206 |
| abstract_inverted_index.addition | 238, 336 |
| abstract_inverted_index.admitted | 81 |
| abstract_inverted_index.advanced | 33, 171 |
| abstract_inverted_index.balance, | 146 |
| abstract_inverted_index.baseline | 132 |
| abstract_inverted_index.compared | 226, 253 |
| abstract_inverted_index.created. | 105 |
| abstract_inverted_index.evaluate | 50 |
| abstract_inverted_index.factors, | 12 |
| abstract_inverted_index.hospital | 100, 250 |
| abstract_inverted_index.improved | 348 |
| abstract_inverted_index.included | 155, 328 |
| abstract_inverted_index.learning | 31, 267, 295, 354 |
| abstract_inverted_index.logistic | 166, 181 |
| abstract_inverted_index.methods. | 365 |
| abstract_inverted_index.modeling | 55 |
| abstract_inverted_index.moderate | 300 |
| abstract_inverted_index.negative | 221 |
| abstract_inverted_index.positive | 216 |
| abstract_inverted_index.receiver | 212 |
| abstract_inverted_index.relative | 361 |
| abstract_inverted_index.separate | 113 |
| abstract_inverted_index.service, | 135 |
| abstract_inverted_index.severity | 340 |
| abstract_inverted_index.splines, | 175, 177 |
| abstract_inverted_index.stepwise | 187 |
| abstract_inverted_index.together | 123 |
| abstract_inverted_index.(equipped | 162, 172 |
| abstract_inverted_index.Potential | 118 |
| abstract_inverted_index.collected | 130 |
| abstract_inverted_index.criterion | 192 |
| abstract_inverted_index.different | 54, 228 |
| abstract_inverted_index.discharge | 103 |
| abstract_inverted_index.included. | 96 |
| abstract_inverted_index.including | 235 |
| abstract_inverted_index.intensive | 87 |
| abstract_inverted_index.mortality | 61, 101, 119, 229, 251, 351 |
| abstract_inverted_index.nonlinear | 21 |
| abstract_inverted_index.operating | 213 |
| abstract_inverted_index.patients, | 5 |
| abstract_inverted_index.patients. | 117 |
| abstract_inverted_index.potential | 19 |
| abstract_inverted_index.predictor | 120, 332 |
| abstract_inverted_index.selection | 188 |
| abstract_inverted_index.severity, | 141 |
| abstract_inverted_index.smoothing | 176 |
| abstract_inverted_index.validated | 109 |
| abstract_inverted_index.variables | 121 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.advantages | 38 |
| abstract_inverted_index.approaches | 56 |
| abstract_inverted_index.critically | 3, 72 |
| abstract_inverted_index.developed. | 208 |
| abstract_inverted_index.diagnosis) | 136 |
| abstract_inverted_index.externally | 108 |
| abstract_inverted_index.importance | 304 |
| abstract_inverted_index.indicators | 126 |
| abstract_inverted_index.laboratory | 147 |
| abstract_inverted_index.linearity) | 180 |
| abstract_inverted_index.medication | 13, 28, 58, 324 |
| abstract_inverted_index.mortality. | 16 |
| abstract_inverted_index.prediction | 230 |
| abstract_inverted_index.predictive | 217, 222 |
| abstract_inverted_index.regression | 34, 41, 167, 182, 287, 334, 364 |
| abstract_inverted_index.supportive | 142 |
| abstract_inverted_index.temporally | 112 |
| abstract_inverted_index.validation | 320 |
| abstract_inverted_index.Conclusions | 322 |
| abstract_inverted_index.Considering | 17 |
| abstract_inverted_index.Supervised, | 194 |
| abstract_inverted_index.information | 191 |
| abstract_inverted_index.management, | 14 |
| abstract_inverted_index.performance | 315, 360 |
| abstract_inverted_index.prediction, | 252 |
| abstract_inverted_index.prediction. | 62, 352 |
| abstract_inverted_index.predictors) | 165 |
| abstract_inverted_index.significant | 331 |
| abstract_inverted_index.techniques. | 42 |
| abstract_inverted_index.traditional | 40, 161, 286, 363 |
| abstract_inverted_index.vasopressor | 152 |
| abstract_inverted_index.demonstrated | 244, 276, 298 |
| abstract_inverted_index.missingness) | 128 |
| abstract_inverted_index.incorporating | 57 |
| abstract_inverted_index.observational | 68 |
| abstract_inverted_index.relationships | 7, 22 |
| abstract_inverted_index.respectively. | 283 |
| abstract_inverted_index.characteristic | 214 |
| abstract_inverted_index.dimensionality | 26 |
| abstract_inverted_index.single-center, | 67 |
| abstract_inverted_index.classification-based | 195 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 9 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.8899999856948853 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.7742709 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |