AutoComPose: Automatic Generation of Pose Transition Descriptions for Composed Pose Retrieval Using Multimodal LLMs Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2503.22884
Composed pose retrieval (CPR) enables users to search for human poses by specifying a reference pose and a transition description, but progress in this field is hindered by the scarcity and inconsistency of annotated pose transitions. Existing CPR datasets rely on costly human annotations or heuristic-based rule generation, both of which limit scalability and diversity. In this work, we introduce AutoComPose, the first framework that leverages multimodal large language models (MLLMs) to automatically generate rich and structured pose transition descriptions. Our method enhances annotation quality by structuring transitions into fine-grained body part movements and introducing mirrored/swapped variations, while a cyclic consistency constraint ensures logical coherence between forward and reverse transitions. To advance CPR research, we construct and release two dedicated benchmarks, AIST-CPR and PoseFixCPR, supplementing prior datasets with enhanced attributes. Extensive experiments demonstrate that training retrieval models with AutoComPose yields superior performance over human-annotated and heuristic-based methods, significantly reducing annotation costs while improving retrieval quality. Our work pioneers the automatic annotation of pose transitions, establishing a scalable foundation for future CPR research.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2503.22884
- https://arxiv.org/pdf/2503.22884
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414990877
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414990877Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2503.22884Digital Object Identifier
- Title
-
AutoComPose: Automatic Generation of Pose Transition Descriptions for Composed Pose Retrieval Using Multimodal LLMsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-28Full publication date if available
- Authors
-
Yi‐Ting Shen, Sungmin Eum, Doheon Lee, Rohit Shete, Chiao-Yi Wang, Heesung Kwon, Shuvra S. BhattacharyyaList of authors in order
- Landing page
-
https://arxiv.org/abs/2503.22884Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2503.22884Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2503.22884Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414990877 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2503.22884 |
| ids.doi | https://doi.org/10.48550/arxiv.2503.22884 |
| ids.openalex | https://openalex.org/W4414990877 |
| fwci | |
| type | preprint |
| title | AutoComPose: Automatic Generation of Pose Transition Descriptions for Composed Pose Retrieval Using Multimodal LLMs |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10181 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9858999848365784 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Natural Language Processing Techniques |
| topics[1].id | https://openalex.org/T11439 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9797000288963318 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Video Analysis and Summarization |
| topics[2].id | https://openalex.org/T12290 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9488000273704529 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Human Motion and Animation |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2503.22884 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2503.22884 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2503.22884 |
| locations[1].id | doi:10.48550/arxiv.2503.22884 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2503.22884 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5016275823 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1167-5535 |
| authorships[0].author.display_name | Yi‐Ting Shen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shen, Yi-Ting |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5077581741 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0767-0395 |
| authorships[1].author.display_name | Sungmin Eum |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Eum, Sungmin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5037879375 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9070-4316 |
| authorships[2].author.display_name | Doheon Lee |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lee, Doheon |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5119918961 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Rohit Shete |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Shete, Rohit |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5012268663 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5481-8911 |
| authorships[4].author.display_name | Chiao-Yi Wang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wang, Chiao-Yi |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5040282679 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Heesung Kwon |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Kwon, Heesung |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5038036261 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-7719-1106 |
| authorships[6].author.display_name | Shuvra S. Bhattacharyya |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Bhattacharyya, Shuvra S. |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2503.22884 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-09T00:00:00 |
| display_name | AutoComPose: Automatic Generation of Pose Transition Descriptions for Composed Pose Retrieval Using Multimodal LLMs |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10181 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9858999848365784 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Natural Language Processing Techniques |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2503.22884 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2503.22884 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2503.22884 |
| primary_location.id | pmh:oai:arXiv.org:2503.22884 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2503.22884 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2503.22884 |
| publication_date | 2025-03-28 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 13, 17, 98, 165 |
| abstract_inverted_index.In | 55 |
| abstract_inverted_index.To | 110 |
| abstract_inverted_index.by | 11, 27, 85 |
| abstract_inverted_index.in | 22 |
| abstract_inverted_index.is | 25 |
| abstract_inverted_index.of | 32, 49, 161 |
| abstract_inverted_index.on | 40 |
| abstract_inverted_index.or | 44 |
| abstract_inverted_index.to | 6, 71 |
| abstract_inverted_index.we | 58, 114 |
| abstract_inverted_index.CPR | 37, 112, 170 |
| abstract_inverted_index.Our | 80, 155 |
| abstract_inverted_index.and | 16, 30, 53, 75, 93, 107, 116, 122, 144 |
| abstract_inverted_index.but | 20 |
| abstract_inverted_index.for | 8, 168 |
| abstract_inverted_index.the | 28, 61, 158 |
| abstract_inverted_index.two | 118 |
| abstract_inverted_index.body | 90 |
| abstract_inverted_index.both | 48 |
| abstract_inverted_index.into | 88 |
| abstract_inverted_index.over | 142 |
| abstract_inverted_index.part | 91 |
| abstract_inverted_index.pose | 1, 15, 34, 77, 162 |
| abstract_inverted_index.rely | 39 |
| abstract_inverted_index.rich | 74 |
| abstract_inverted_index.rule | 46 |
| abstract_inverted_index.that | 64, 133 |
| abstract_inverted_index.this | 23, 56 |
| abstract_inverted_index.with | 127, 137 |
| abstract_inverted_index.work | 156 |
| abstract_inverted_index.(CPR) | 3 |
| abstract_inverted_index.costs | 150 |
| abstract_inverted_index.field | 24 |
| abstract_inverted_index.first | 62 |
| abstract_inverted_index.human | 9, 42 |
| abstract_inverted_index.large | 67 |
| abstract_inverted_index.limit | 51 |
| abstract_inverted_index.poses | 10 |
| abstract_inverted_index.prior | 125 |
| abstract_inverted_index.users | 5 |
| abstract_inverted_index.which | 50 |
| abstract_inverted_index.while | 97, 151 |
| abstract_inverted_index.work, | 57 |
| abstract_inverted_index.costly | 41 |
| abstract_inverted_index.cyclic | 99 |
| abstract_inverted_index.future | 169 |
| abstract_inverted_index.method | 81 |
| abstract_inverted_index.models | 69, 136 |
| abstract_inverted_index.search | 7 |
| abstract_inverted_index.yields | 139 |
| abstract_inverted_index.(MLLMs) | 70 |
| abstract_inverted_index.advance | 111 |
| abstract_inverted_index.between | 105 |
| abstract_inverted_index.enables | 4 |
| abstract_inverted_index.ensures | 102 |
| abstract_inverted_index.forward | 106 |
| abstract_inverted_index.logical | 103 |
| abstract_inverted_index.quality | 84 |
| abstract_inverted_index.release | 117 |
| abstract_inverted_index.reverse | 108 |
| abstract_inverted_index.AIST-CPR | 121 |
| abstract_inverted_index.Composed | 0 |
| abstract_inverted_index.Existing | 36 |
| abstract_inverted_index.datasets | 38, 126 |
| abstract_inverted_index.enhanced | 128 |
| abstract_inverted_index.enhances | 82 |
| abstract_inverted_index.generate | 73 |
| abstract_inverted_index.hindered | 26 |
| abstract_inverted_index.language | 68 |
| abstract_inverted_index.methods, | 146 |
| abstract_inverted_index.pioneers | 157 |
| abstract_inverted_index.progress | 21 |
| abstract_inverted_index.quality. | 154 |
| abstract_inverted_index.reducing | 148 |
| abstract_inverted_index.scalable | 166 |
| abstract_inverted_index.scarcity | 29 |
| abstract_inverted_index.superior | 140 |
| abstract_inverted_index.training | 134 |
| abstract_inverted_index.Extensive | 130 |
| abstract_inverted_index.annotated | 33 |
| abstract_inverted_index.automatic | 159 |
| abstract_inverted_index.coherence | 104 |
| abstract_inverted_index.construct | 115 |
| abstract_inverted_index.dedicated | 119 |
| abstract_inverted_index.framework | 63 |
| abstract_inverted_index.improving | 152 |
| abstract_inverted_index.introduce | 59 |
| abstract_inverted_index.leverages | 65 |
| abstract_inverted_index.movements | 92 |
| abstract_inverted_index.reference | 14 |
| abstract_inverted_index.research, | 113 |
| abstract_inverted_index.research. | 171 |
| abstract_inverted_index.retrieval | 2, 135, 153 |
| abstract_inverted_index.annotation | 83, 149, 160 |
| abstract_inverted_index.constraint | 101 |
| abstract_inverted_index.diversity. | 54 |
| abstract_inverted_index.foundation | 167 |
| abstract_inverted_index.multimodal | 66 |
| abstract_inverted_index.specifying | 12 |
| abstract_inverted_index.structured | 76 |
| abstract_inverted_index.transition | 18, 78 |
| abstract_inverted_index.AutoComPose | 138 |
| abstract_inverted_index.PoseFixCPR, | 123 |
| abstract_inverted_index.annotations | 43 |
| abstract_inverted_index.attributes. | 129 |
| abstract_inverted_index.benchmarks, | 120 |
| abstract_inverted_index.consistency | 100 |
| abstract_inverted_index.demonstrate | 132 |
| abstract_inverted_index.experiments | 131 |
| abstract_inverted_index.generation, | 47 |
| abstract_inverted_index.introducing | 94 |
| abstract_inverted_index.performance | 141 |
| abstract_inverted_index.scalability | 52 |
| abstract_inverted_index.structuring | 86 |
| abstract_inverted_index.transitions | 87 |
| abstract_inverted_index.variations, | 96 |
| abstract_inverted_index.AutoComPose, | 60 |
| abstract_inverted_index.description, | 19 |
| abstract_inverted_index.establishing | 164 |
| abstract_inverted_index.fine-grained | 89 |
| abstract_inverted_index.transitions, | 163 |
| abstract_inverted_index.transitions. | 35, 109 |
| abstract_inverted_index.automatically | 72 |
| abstract_inverted_index.descriptions. | 79 |
| abstract_inverted_index.inconsistency | 31 |
| abstract_inverted_index.significantly | 147 |
| abstract_inverted_index.supplementing | 124 |
| abstract_inverted_index.heuristic-based | 45, 145 |
| abstract_inverted_index.human-annotated | 143 |
| abstract_inverted_index.mirrored/swapped | 95 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |