AutoEIS: automated Bayesian model selection and analysis for electrochemical impedance spectroscopy Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2305.04841
Electrochemical Impedance Spectroscopy (EIS) is a powerful tool for electrochemical analysis; however, its data can be challenging to interpret. Here, we introduce a new open-source tool named AutoEIS that assists EIS analysis by automatically proposing statistically plausible equivalent circuit models (ECMs). AutoEIS does this without requiring an exhaustive mechanistic understanding of the electrochemical systems. We demonstrate the generalizability of AutoEIS by using it to analyze EIS datasets from three distinct electrochemical systems, including thin-film oxygen evolution reaction (OER) electrocatalysis, corrosion of self-healing multi-principal components alloys, and a carbon dioxide reduction electrolyzer device. In each case, AutoEIS identified competitive or in some cases superior ECMs to those recommended by experts and provided statistical indicators of the preferred solution. The results demonstrated AutoEIS's capability to facilitate EIS analysis without expert labels while diminishing user bias in a high-throughput manner. AutoEIS provides a generalized automated approach to facilitate EIS analysis spanning a broad suite of electrochemical applications with minimal prior knowledge of the system required. This tool holds great potential in improving the efficiency, accuracy, and ease of EIS analysis and thus creates an avenue to the widespread use of EIS in accelerating the development of new electrochemical materials and devices.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2305.04841
- https://arxiv.org/pdf/2305.04841
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4375959490
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4375959490Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2305.04841Digital Object Identifier
- Title
-
AutoEIS: automated Bayesian model selection and analysis for electrochemical impedance spectroscopyWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-05-08Full publication date if available
- Authors
-
Runze Zhang, Robert W. Black, Debashish Sur, Parisa Karimi, Kangming Li, Brian DeCost, John R. Scully, Jason Hattrick‐SimpersList of authors in order
- Landing page
-
https://arxiv.org/abs/2305.04841Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2305.04841Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2305.04841Direct OA link when available
- Concepts
-
Dielectric spectroscopy, Computer science, Generalizability theory, Electrochemistry, Electrode, Chemistry, Physical chemistry, Statistics, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4375959490 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2305.04841 |
| ids.doi | https://doi.org/10.48550/arxiv.2305.04841 |
| ids.openalex | https://openalex.org/W4375959490 |
| fwci | |
| type | preprint |
| title | AutoEIS: automated Bayesian model selection and analysis for electrochemical impedance spectroscopy |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10409 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Fuel Cells and Related Materials |
| topics[1].id | https://openalex.org/T11948 |
| topics[1].field.id | https://openalex.org/fields/25 |
| topics[1].field.display_name | Materials Science |
| topics[1].score | 0.9987000226974487 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2505 |
| topics[1].subfield.display_name | Materials Chemistry |
| topics[1].display_name | Machine Learning in Materials Science |
| topics[2].id | https://openalex.org/T10030 |
| topics[2].field.id | https://openalex.org/fields/21 |
| topics[2].field.display_name | Energy |
| topics[2].score | 0.9958000183105469 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2105 |
| topics[2].subfield.display_name | Renewable Energy, Sustainability and the Environment |
| topics[2].display_name | Electrocatalysts for Energy Conversion |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C7040849 |
| concepts[0].level | 4 |
| concepts[0].score | 0.8735863566398621 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q899580 |
| concepts[0].display_name | Dielectric spectroscopy |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6377599239349365 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C27158222 |
| concepts[2].level | 2 |
| concepts[2].score | 0.435931533575058 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5532422 |
| concepts[2].display_name | Generalizability theory |
| concepts[3].id | https://openalex.org/C52859227 |
| concepts[3].level | 3 |
| concepts[3].score | 0.22676727175712585 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7877 |
| concepts[3].display_name | Electrochemistry |
| concepts[4].id | https://openalex.org/C17525397 |
| concepts[4].level | 2 |
| concepts[4].score | 0.1735784411430359 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q176140 |
| concepts[4].display_name | Electrode |
| concepts[5].id | https://openalex.org/C185592680 |
| concepts[5].level | 0 |
| concepts[5].score | 0.15322035551071167 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[5].display_name | Chemistry |
| concepts[6].id | https://openalex.org/C147789679 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11372 |
| concepts[6].display_name | Physical chemistry |
| concepts[7].id | https://openalex.org/C105795698 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[7].display_name | Statistics |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/dielectric-spectroscopy |
| keywords[0].score | 0.8735863566398621 |
| keywords[0].display_name | Dielectric spectroscopy |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6377599239349365 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/generalizability-theory |
| keywords[2].score | 0.435931533575058 |
| keywords[2].display_name | Generalizability theory |
| keywords[3].id | https://openalex.org/keywords/electrochemistry |
| keywords[3].score | 0.22676727175712585 |
| keywords[3].display_name | Electrochemistry |
| keywords[4].id | https://openalex.org/keywords/electrode |
| keywords[4].score | 0.1735784411430359 |
| keywords[4].display_name | Electrode |
| keywords[5].id | https://openalex.org/keywords/chemistry |
| keywords[5].score | 0.15322035551071167 |
| keywords[5].display_name | Chemistry |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2305.04841 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2305.04841 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2305.04841 |
| locations[1].id | doi:10.48550/arxiv.2305.04841 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2305.04841 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101549173 |
| authorships[0].author.orcid | https://orcid.org/0009-0004-9088-7924 |
| authorships[0].author.display_name | Runze Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhang, Runze |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5079941635 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4748-8213 |
| authorships[1].author.display_name | Robert W. Black |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Black, Robert |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5044464775 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7954-9949 |
| authorships[2].author.display_name | Debashish Sur |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sur, Debashish |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5092345197 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Parisa Karimi |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Karimi, Parisa |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5055766485 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4471-8527 |
| authorships[4].author.display_name | Kangming Li |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Li, Kangming |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5053080365 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3459-5888 |
| authorships[5].author.display_name | Brian DeCost |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | DeCost, Brian |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5073061221 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-5353-766X |
| authorships[6].author.display_name | John R. Scully |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Scully, John |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5073635313 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-2937-3188 |
| authorships[7].author.display_name | Jason Hattrick‐Simpers |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Hattrick-Simpers, Jason |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2305.04841 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | AutoEIS: automated Bayesian model selection and analysis for electrochemical impedance spectroscopy |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10409 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Fuel Cells and Related Materials |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2118717649, https://openalex.org/W2413243053, https://openalex.org/W410723623, https://openalex.org/W2015341305, https://openalex.org/W2035068594, https://openalex.org/W4225593417, https://openalex.org/W2573498121, https://openalex.org/W3022298670 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2305.04841 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2305.04841 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2305.04841 |
| primary_location.id | pmh:oai:arXiv.org:2305.04841 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2305.04841 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2305.04841 |
| publication_date | 2023-05-08 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 5, 22, 86, 134, 139, 148 |
| abstract_inverted_index.In | 92 |
| abstract_inverted_index.We | 54 |
| abstract_inverted_index.an | 46, 180 |
| abstract_inverted_index.be | 15 |
| abstract_inverted_index.by | 32, 60, 107 |
| abstract_inverted_index.in | 99, 133, 167, 188 |
| abstract_inverted_index.is | 4 |
| abstract_inverted_index.it | 62 |
| abstract_inverted_index.of | 50, 58, 80, 113, 151, 158, 174, 186, 192 |
| abstract_inverted_index.or | 98 |
| abstract_inverted_index.to | 17, 63, 104, 122, 143, 182 |
| abstract_inverted_index.we | 20 |
| abstract_inverted_index.EIS | 30, 65, 124, 145, 175, 187 |
| abstract_inverted_index.The | 117 |
| abstract_inverted_index.and | 85, 109, 172, 177, 196 |
| abstract_inverted_index.can | 14 |
| abstract_inverted_index.for | 8 |
| abstract_inverted_index.its | 12 |
| abstract_inverted_index.new | 23, 193 |
| abstract_inverted_index.the | 51, 56, 114, 159, 169, 183, 190 |
| abstract_inverted_index.use | 185 |
| abstract_inverted_index.ECMs | 103 |
| abstract_inverted_index.This | 162 |
| abstract_inverted_index.bias | 132 |
| abstract_inverted_index.data | 13 |
| abstract_inverted_index.does | 42 |
| abstract_inverted_index.each | 93 |
| abstract_inverted_index.ease | 173 |
| abstract_inverted_index.from | 67 |
| abstract_inverted_index.some | 100 |
| abstract_inverted_index.that | 28 |
| abstract_inverted_index.this | 43 |
| abstract_inverted_index.thus | 178 |
| abstract_inverted_index.tool | 7, 25, 163 |
| abstract_inverted_index.user | 131 |
| abstract_inverted_index.with | 154 |
| abstract_inverted_index.(EIS) | 3 |
| abstract_inverted_index.(OER) | 77 |
| abstract_inverted_index.Here, | 19 |
| abstract_inverted_index.broad | 149 |
| abstract_inverted_index.case, | 94 |
| abstract_inverted_index.cases | 101 |
| abstract_inverted_index.great | 165 |
| abstract_inverted_index.holds | 164 |
| abstract_inverted_index.named | 26 |
| abstract_inverted_index.prior | 156 |
| abstract_inverted_index.suite | 150 |
| abstract_inverted_index.those | 105 |
| abstract_inverted_index.three | 68 |
| abstract_inverted_index.using | 61 |
| abstract_inverted_index.while | 129 |
| abstract_inverted_index.avenue | 181 |
| abstract_inverted_index.carbon | 87 |
| abstract_inverted_index.expert | 127 |
| abstract_inverted_index.labels | 128 |
| abstract_inverted_index.models | 39 |
| abstract_inverted_index.oxygen | 74 |
| abstract_inverted_index.system | 160 |
| abstract_inverted_index.(ECMs). | 40 |
| abstract_inverted_index.AutoEIS | 27, 41, 59, 95, 137 |
| abstract_inverted_index.alloys, | 84 |
| abstract_inverted_index.analyze | 64 |
| abstract_inverted_index.assists | 29 |
| abstract_inverted_index.circuit | 38 |
| abstract_inverted_index.creates | 179 |
| abstract_inverted_index.device. | 91 |
| abstract_inverted_index.dioxide | 88 |
| abstract_inverted_index.experts | 108 |
| abstract_inverted_index.manner. | 136 |
| abstract_inverted_index.minimal | 155 |
| abstract_inverted_index.results | 118 |
| abstract_inverted_index.without | 44, 126 |
| abstract_inverted_index.analysis | 31, 125, 146, 176 |
| abstract_inverted_index.approach | 142 |
| abstract_inverted_index.datasets | 66 |
| abstract_inverted_index.devices. | 197 |
| abstract_inverted_index.distinct | 69 |
| abstract_inverted_index.however, | 11 |
| abstract_inverted_index.powerful | 6 |
| abstract_inverted_index.provided | 110 |
| abstract_inverted_index.provides | 138 |
| abstract_inverted_index.reaction | 76 |
| abstract_inverted_index.spanning | 147 |
| abstract_inverted_index.superior | 102 |
| abstract_inverted_index.systems, | 71 |
| abstract_inverted_index.systems. | 53 |
| abstract_inverted_index.AutoEIS's | 120 |
| abstract_inverted_index.Impedance | 1 |
| abstract_inverted_index.accuracy, | 171 |
| abstract_inverted_index.analysis; | 10 |
| abstract_inverted_index.automated | 141 |
| abstract_inverted_index.corrosion | 79 |
| abstract_inverted_index.evolution | 75 |
| abstract_inverted_index.improving | 168 |
| abstract_inverted_index.including | 72 |
| abstract_inverted_index.introduce | 21 |
| abstract_inverted_index.knowledge | 157 |
| abstract_inverted_index.materials | 195 |
| abstract_inverted_index.plausible | 36 |
| abstract_inverted_index.potential | 166 |
| abstract_inverted_index.preferred | 115 |
| abstract_inverted_index.proposing | 34 |
| abstract_inverted_index.reduction | 89 |
| abstract_inverted_index.required. | 161 |
| abstract_inverted_index.requiring | 45 |
| abstract_inverted_index.solution. | 116 |
| abstract_inverted_index.thin-film | 73 |
| abstract_inverted_index.capability | 121 |
| abstract_inverted_index.components | 83 |
| abstract_inverted_index.equivalent | 37 |
| abstract_inverted_index.exhaustive | 47 |
| abstract_inverted_index.facilitate | 123, 144 |
| abstract_inverted_index.identified | 96 |
| abstract_inverted_index.indicators | 112 |
| abstract_inverted_index.interpret. | 18 |
| abstract_inverted_index.widespread | 184 |
| abstract_inverted_index.challenging | 16 |
| abstract_inverted_index.competitive | 97 |
| abstract_inverted_index.demonstrate | 55 |
| abstract_inverted_index.development | 191 |
| abstract_inverted_index.diminishing | 130 |
| abstract_inverted_index.efficiency, | 170 |
| abstract_inverted_index.generalized | 140 |
| abstract_inverted_index.mechanistic | 48 |
| abstract_inverted_index.open-source | 24 |
| abstract_inverted_index.recommended | 106 |
| abstract_inverted_index.statistical | 111 |
| abstract_inverted_index.Spectroscopy | 2 |
| abstract_inverted_index.accelerating | 189 |
| abstract_inverted_index.applications | 153 |
| abstract_inverted_index.demonstrated | 119 |
| abstract_inverted_index.electrolyzer | 90 |
| abstract_inverted_index.self-healing | 81 |
| abstract_inverted_index.automatically | 33 |
| abstract_inverted_index.statistically | 35 |
| abstract_inverted_index.understanding | 49 |
| abstract_inverted_index.Electrochemical | 0 |
| abstract_inverted_index.electrochemical | 9, 52, 70, 152, 194 |
| abstract_inverted_index.high-throughput | 135 |
| abstract_inverted_index.multi-principal | 82 |
| abstract_inverted_index.generalizability | 57 |
| abstract_inverted_index.electrocatalysis, | 78 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |