Autoencoder-based Representation Learning from Heterogeneous Multivariate Time Series Data of Mechatronic Systems Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2104.02784
Sensor and control data of modern mechatronic systems are often available as heterogeneous time series with different sampling rates and value ranges. Suitable classification and regression methods from the field of supervised machine learning already exist for predictive tasks, for example in the context of condition monitoring, but their performance scales strongly with the number of labeled training data. Their provision is often associated with high effort in the form of person-hours or additional sensors. In this paper, we present a method for unsupervised feature extraction using autoencoder networks that specifically addresses the heterogeneous nature of the database and reduces the amount of labeled training data required compared to existing methods. Three public datasets of mechatronic systems from different application domains are used to validate the results.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://arxiv.org/pdf/2104.02784.pdf
- OA Status
- green
- Cited By
- 1
- References
- 15
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3150193503
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3150193503Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2104.02784Digital Object Identifier
- Title
-
Autoencoder-based Representation Learning from Heterogeneous Multivariate Time Series Data of Mechatronic SystemsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-04-06Full publication date if available
- Authors
-
Karl-Philipp Kortmann, Moritz Fehsenfeld, Mark WielitzkaList of authors in order
- Landing page
-
https://arxiv.org/pdf/2104.02784.pdfPublisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2104.02784.pdfDirect OA link when available
- Concepts
-
Autoencoder, Computer science, Artificial intelligence, Context (archaeology), Machine learning, Multivariate statistics, Mechatronics, Field (mathematics), Unsupervised learning, Representation (politics), Time series, Supervised learning, Data mining, Feature (linguistics), Ranking (information retrieval), Feature learning, Artificial neural network, Mathematics, Politics, Biology, Linguistics, Paleontology, Law, Political science, Philosophy, Pure mathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 1Per-year citation counts (last 5 years)
- References (count)
-
15Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3150193503 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2104.02784 |
| ids.doi | https://doi.org/10.48550/arxiv.2104.02784 |
| ids.mag | 3150193503 |
| ids.openalex | https://openalex.org/W3150193503 |
| fwci | |
| type | preprint |
| title | Autoencoder-based Representation Learning from Heterogeneous Multivariate Time Series Data of Mechatronic Systems |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12205 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Time Series Analysis and Forecasting |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.998199999332428 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T11667 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.989799976348877 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Advanced Chemical Sensor Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C101738243 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7483914494514465 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q786435 |
| concepts[0].display_name | Autoencoder |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6506300568580627 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.632836103439331 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2779343474 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5967260003089905 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[3].display_name | Context (archaeology) |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5938668847084045 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C161584116 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5492043495178223 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1952580 |
| concepts[5].display_name | Multivariate statistics |
| concepts[6].id | https://openalex.org/C28704281 |
| concepts[6].level | 2 |
| concepts[6].score | 0.541729211807251 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q180165 |
| concepts[6].display_name | Mechatronics |
| concepts[7].id | https://openalex.org/C9652623 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5347949862480164 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[7].display_name | Field (mathematics) |
| concepts[8].id | https://openalex.org/C8038995 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4905468821525574 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1152135 |
| concepts[8].display_name | Unsupervised learning |
| concepts[9].id | https://openalex.org/C2776359362 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4820419251918793 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[9].display_name | Representation (politics) |
| concepts[10].id | https://openalex.org/C151406439 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4733952283859253 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q186588 |
| concepts[10].display_name | Time series |
| concepts[11].id | https://openalex.org/C136389625 |
| concepts[11].level | 3 |
| concepts[11].score | 0.44121071696281433 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q334384 |
| concepts[11].display_name | Supervised learning |
| concepts[12].id | https://openalex.org/C124101348 |
| concepts[12].level | 1 |
| concepts[12].score | 0.43537023663520813 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[12].display_name | Data mining |
| concepts[13].id | https://openalex.org/C2776401178 |
| concepts[13].level | 2 |
| concepts[13].score | 0.41831886768341064 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[13].display_name | Feature (linguistics) |
| concepts[14].id | https://openalex.org/C189430467 |
| concepts[14].level | 2 |
| concepts[14].score | 0.4164767861366272 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7293293 |
| concepts[14].display_name | Ranking (information retrieval) |
| concepts[15].id | https://openalex.org/C59404180 |
| concepts[15].level | 2 |
| concepts[15].score | 0.4116193652153015 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q17013334 |
| concepts[15].display_name | Feature learning |
| concepts[16].id | https://openalex.org/C50644808 |
| concepts[16].level | 2 |
| concepts[16].score | 0.3969161808490753 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[16].display_name | Artificial neural network |
| concepts[17].id | https://openalex.org/C33923547 |
| concepts[17].level | 0 |
| concepts[17].score | 0.09057044982910156 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[17].display_name | Mathematics |
| concepts[18].id | https://openalex.org/C94625758 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[18].display_name | Politics |
| concepts[19].id | https://openalex.org/C86803240 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[19].display_name | Biology |
| concepts[20].id | https://openalex.org/C41895202 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[20].display_name | Linguistics |
| concepts[21].id | https://openalex.org/C151730666 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[21].display_name | Paleontology |
| concepts[22].id | https://openalex.org/C199539241 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[22].display_name | Law |
| concepts[23].id | https://openalex.org/C17744445 |
| concepts[23].level | 0 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[23].display_name | Political science |
| concepts[24].id | https://openalex.org/C138885662 |
| concepts[24].level | 0 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[24].display_name | Philosophy |
| concepts[25].id | https://openalex.org/C202444582 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[25].display_name | Pure mathematics |
| keywords[0].id | https://openalex.org/keywords/autoencoder |
| keywords[0].score | 0.7483914494514465 |
| keywords[0].display_name | Autoencoder |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6506300568580627 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.632836103439331 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/context |
| keywords[3].score | 0.5967260003089905 |
| keywords[3].display_name | Context (archaeology) |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.5938668847084045 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/multivariate-statistics |
| keywords[5].score | 0.5492043495178223 |
| keywords[5].display_name | Multivariate statistics |
| keywords[6].id | https://openalex.org/keywords/mechatronics |
| keywords[6].score | 0.541729211807251 |
| keywords[6].display_name | Mechatronics |
| keywords[7].id | https://openalex.org/keywords/field |
| keywords[7].score | 0.5347949862480164 |
| keywords[7].display_name | Field (mathematics) |
| keywords[8].id | https://openalex.org/keywords/unsupervised-learning |
| keywords[8].score | 0.4905468821525574 |
| keywords[8].display_name | Unsupervised learning |
| keywords[9].id | https://openalex.org/keywords/representation |
| keywords[9].score | 0.4820419251918793 |
| keywords[9].display_name | Representation (politics) |
| keywords[10].id | https://openalex.org/keywords/time-series |
| keywords[10].score | 0.4733952283859253 |
| keywords[10].display_name | Time series |
| keywords[11].id | https://openalex.org/keywords/supervised-learning |
| keywords[11].score | 0.44121071696281433 |
| keywords[11].display_name | Supervised learning |
| keywords[12].id | https://openalex.org/keywords/data-mining |
| keywords[12].score | 0.43537023663520813 |
| keywords[12].display_name | Data mining |
| keywords[13].id | https://openalex.org/keywords/feature |
| keywords[13].score | 0.41831886768341064 |
| keywords[13].display_name | Feature (linguistics) |
| keywords[14].id | https://openalex.org/keywords/ranking |
| keywords[14].score | 0.4164767861366272 |
| keywords[14].display_name | Ranking (information retrieval) |
| keywords[15].id | https://openalex.org/keywords/feature-learning |
| keywords[15].score | 0.4116193652153015 |
| keywords[15].display_name | Feature learning |
| keywords[16].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[16].score | 0.3969161808490753 |
| keywords[16].display_name | Artificial neural network |
| keywords[17].id | https://openalex.org/keywords/mathematics |
| keywords[17].score | 0.09057044982910156 |
| keywords[17].display_name | Mathematics |
| language | en |
| locations[0].id | mag:3150193503 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | arXiv (Cornell University) |
| locations[0].landing_page_url | https://arxiv.org/pdf/2104.02784.pdf |
| locations[1].id | doi:10.48550/arxiv.2104.02784 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2104.02784 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5030912644 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0472-3316 |
| authorships[0].author.display_name | Karl-Philipp Kortmann |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210133528 |
| authorships[0].affiliations[0].raw_affiliation_string | Leibniz University of Hanover, |
| authorships[0].institutions[0].id | https://openalex.org/I4210133528 |
| authorships[0].institutions[0].ror | https://ror.org/03eqwj662 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210133528 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Leibniz University of Applied Sciences |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Karl-Philipp Kortmann |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Leibniz University of Hanover, |
| authorships[1].author.id | https://openalex.org/A5041750150 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2639-7838 |
| authorships[1].author.display_name | Moritz Fehsenfeld |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Moritz Fehsenfeld |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5039880918 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Mark Wielitzka |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Mark Wielitzka |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2104.02784.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Autoencoder-based Representation Learning from Heterogeneous Multivariate Time Series Data of Mechatronic Systems |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12205 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Time Series Analysis and Forecasting |
| related_works | https://openalex.org/W3199666757, https://openalex.org/W2123284999, https://openalex.org/W3016895873, https://openalex.org/W2998010409, https://openalex.org/W2904798028, https://openalex.org/W2989055432, https://openalex.org/W3099025572, https://openalex.org/W2954753412, https://openalex.org/W3176600950, https://openalex.org/W2963417023, https://openalex.org/W3091015422, https://openalex.org/W2937311542, https://openalex.org/W3129728822, https://openalex.org/W2890931111, https://openalex.org/W2752124967, https://openalex.org/W3098250197, https://openalex.org/W1497386171, https://openalex.org/W3158246899, https://openalex.org/W2471138382, https://openalex.org/W2899992091 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | mag:3150193503 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | arXiv (Cornell University) |
| best_oa_location.landing_page_url | https://arxiv.org/pdf/2104.02784.pdf |
| primary_location.id | mag:3150193503 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | arXiv (Cornell University) |
| primary_location.landing_page_url | https://arxiv.org/pdf/2104.02784.pdf |
| publication_date | 2021-04-06 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2920777619, https://openalex.org/W2963919714, https://openalex.org/W3103543904, https://openalex.org/W3114313061, https://openalex.org/W1582873796, https://openalex.org/W2317595875, https://openalex.org/W2911200746, https://openalex.org/W2975649990, https://openalex.org/W2962897886, https://openalex.org/W51642679, https://openalex.org/W2933697479, https://openalex.org/W3010542492, https://openalex.org/W2951004968, https://openalex.org/W2963912395, https://openalex.org/W2964121744 |
| referenced_works_count | 15 |
| abstract_inverted_index.a | 80 |
| abstract_inverted_index.In | 75 |
| abstract_inverted_index.as | 11 |
| abstract_inverted_index.in | 41, 67 |
| abstract_inverted_index.is | 61 |
| abstract_inverted_index.of | 4, 30, 44, 55, 70, 95, 102, 114 |
| abstract_inverted_index.or | 72 |
| abstract_inverted_index.to | 108, 123 |
| abstract_inverted_index.we | 78 |
| abstract_inverted_index.and | 1, 19, 24, 98 |
| abstract_inverted_index.are | 8, 121 |
| abstract_inverted_index.but | 47 |
| abstract_inverted_index.for | 36, 39, 82 |
| abstract_inverted_index.the | 28, 42, 53, 68, 92, 96, 100, 125 |
| abstract_inverted_index.data | 3, 105 |
| abstract_inverted_index.form | 69 |
| abstract_inverted_index.from | 27, 117 |
| abstract_inverted_index.high | 65 |
| abstract_inverted_index.that | 89 |
| abstract_inverted_index.this | 76 |
| abstract_inverted_index.time | 13 |
| abstract_inverted_index.used | 122 |
| abstract_inverted_index.with | 15, 52, 64 |
| abstract_inverted_index.Their | 59 |
| abstract_inverted_index.Three | 111 |
| abstract_inverted_index.data. | 58 |
| abstract_inverted_index.exist | 35 |
| abstract_inverted_index.field | 29 |
| abstract_inverted_index.often | 9, 62 |
| abstract_inverted_index.rates | 18 |
| abstract_inverted_index.their | 48 |
| abstract_inverted_index.using | 86 |
| abstract_inverted_index.value | 20 |
| abstract_inverted_index.Sensor | 0 |
| abstract_inverted_index.amount | 101 |
| abstract_inverted_index.effort | 66 |
| abstract_inverted_index.method | 81 |
| abstract_inverted_index.modern | 5 |
| abstract_inverted_index.nature | 94 |
| abstract_inverted_index.number | 54 |
| abstract_inverted_index.paper, | 77 |
| abstract_inverted_index.public | 112 |
| abstract_inverted_index.scales | 50 |
| abstract_inverted_index.series | 14 |
| abstract_inverted_index.tasks, | 38 |
| abstract_inverted_index.already | 34 |
| abstract_inverted_index.context | 43 |
| abstract_inverted_index.control | 2 |
| abstract_inverted_index.domains | 120 |
| abstract_inverted_index.example | 40 |
| abstract_inverted_index.feature | 84 |
| abstract_inverted_index.labeled | 56, 103 |
| abstract_inverted_index.machine | 32 |
| abstract_inverted_index.methods | 26 |
| abstract_inverted_index.present | 79 |
| abstract_inverted_index.ranges. | 21 |
| abstract_inverted_index.reduces | 99 |
| abstract_inverted_index.systems | 7, 116 |
| abstract_inverted_index.Suitable | 22 |
| abstract_inverted_index.compared | 107 |
| abstract_inverted_index.database | 97 |
| abstract_inverted_index.datasets | 113 |
| abstract_inverted_index.existing | 109 |
| abstract_inverted_index.learning | 33 |
| abstract_inverted_index.methods. | 110 |
| abstract_inverted_index.networks | 88 |
| abstract_inverted_index.required | 106 |
| abstract_inverted_index.results. | 126 |
| abstract_inverted_index.sampling | 17 |
| abstract_inverted_index.sensors. | 74 |
| abstract_inverted_index.strongly | 51 |
| abstract_inverted_index.training | 57, 104 |
| abstract_inverted_index.validate | 124 |
| abstract_inverted_index.addresses | 91 |
| abstract_inverted_index.available | 10 |
| abstract_inverted_index.condition | 45 |
| abstract_inverted_index.different | 16, 118 |
| abstract_inverted_index.provision | 60 |
| abstract_inverted_index.additional | 73 |
| abstract_inverted_index.associated | 63 |
| abstract_inverted_index.extraction | 85 |
| abstract_inverted_index.predictive | 37 |
| abstract_inverted_index.regression | 25 |
| abstract_inverted_index.supervised | 31 |
| abstract_inverted_index.application | 119 |
| abstract_inverted_index.autoencoder | 87 |
| abstract_inverted_index.mechatronic | 6, 115 |
| abstract_inverted_index.monitoring, | 46 |
| abstract_inverted_index.performance | 49 |
| abstract_inverted_index.person-hours | 71 |
| abstract_inverted_index.specifically | 90 |
| abstract_inverted_index.unsupervised | 83 |
| abstract_inverted_index.heterogeneous | 12, 93 |
| abstract_inverted_index.classification | 23 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |