Autoencoder techniques for survival analysis on renal cell carcinoma Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1371/journal.pone.0321045
Survival is the gold standard in oncology when determining the real impact of therapies in patients outcome. Thus, identifying molecular predictors of survival (like genetic alterations or transcriptomic patterns of gene expression) is one of the most relevant fields in current research. Statistical methods and metrics to analyze time-to-event data are crucial in understanding disease progression and the effectiveness of treatments. However, in the medical field, data is often high-dimensional, complicating the application of such methodologies. In this study, we addressed this challenge by compressing the high-dimensional transcriptomic data of patients treated with immunotherapy (avelumab + axitinib) and a TKI (sunitinib) into latent, meaningful features using autoencoders. We applied a semi-parametric statistical approach based on the COX Proportional Hazards model, coupled with Breslow’s estimator, to predict each patient’s Progression-Free Survival (PFS) and determine survival functions. Our analysis explored various penalty configurations and their combinations. Given the complexity of transcriptomic data, we extended our model to incorporate both tabular data and its graph variant, where edges represent protein-protein interactions between genes, offering a more insightful approach. Recognizing the interpretability challenges inherent in neural networks, particularly autoencoders, we analyzed the mutual information between genes in the original data and their latent feature representations to clarify which genes are most associated with specific latent variables. The results indicate that different types of autoencoders are better suited for different tasks: denoising autoencoders excel at accurate reconstruction, while the sparse variant is more effective at producing meaningful representations. Additionally, combining these penalties enhances both reconstruction quality and the interpretability of latent features. The interpretable models identified genes such as LRP2 and ACE2 as highly relevant to renal cell carcinoma. This research underscores the utility of autoencoders in managing high-dimensional data problems.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1371/journal.pone.0321045
- OA Status
- gold
- Cited By
- 1
- References
- 39
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410392795
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410392795Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1371/journal.pone.0321045Digital Object Identifier
- Title
-
Autoencoder techniques for survival analysis on renal cell carcinomaWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-15Full publication date if available
- Authors
-
Iñigo Sanz Ilundain, Laura Hernández-Lorenzo, Cristina Rodríguez‐Antona, Jesús García-Donás, José L. AyalaList of authors in order
- Landing page
-
https://doi.org/10.1371/journal.pone.0321045Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1371/journal.pone.0321045Direct OA link when available
- Concepts
-
Interpretability, Computer science, Artificial intelligence, Machine learning, Proportional hazards model, Autoencoder, Survival analysis, Inference, Data mining, Bioinformatics, Pattern recognition (psychology), Deep learning, Biology, Medicine, Internal medicine, SurgeryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
39Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410392795 |
|---|---|
| doi | https://doi.org/10.1371/journal.pone.0321045 |
| ids.doi | https://doi.org/10.1371/journal.pone.0321045 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40373089 |
| ids.openalex | https://openalex.org/W4410392795 |
| fwci | 2.68294463 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | Q000235 |
| mesh[1].descriptor_ui | D002292 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | genetics |
| mesh[1].descriptor_name | Carcinoma, Renal Cell |
| mesh[2].qualifier_ui | Q000401 |
| mesh[2].descriptor_ui | D002292 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | mortality |
| mesh[2].descriptor_name | Carcinoma, Renal Cell |
| mesh[3].qualifier_ui | Q000188 |
| mesh[3].descriptor_ui | D002292 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | drug therapy |
| mesh[3].descriptor_name | Carcinoma, Renal Cell |
| mesh[4].qualifier_ui | Q000473 |
| mesh[4].descriptor_ui | D002292 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | pathology |
| mesh[4].descriptor_name | Carcinoma, Renal Cell |
| mesh[5].qualifier_ui | Q000235 |
| mesh[5].descriptor_ui | D007680 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | genetics |
| mesh[5].descriptor_name | Kidney Neoplasms |
| mesh[6].qualifier_ui | Q000401 |
| mesh[6].descriptor_ui | D007680 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | mortality |
| mesh[6].descriptor_name | Kidney Neoplasms |
| mesh[7].qualifier_ui | Q000188 |
| mesh[7].descriptor_ui | D007680 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | drug therapy |
| mesh[7].descriptor_name | Kidney Neoplasms |
| mesh[8].qualifier_ui | Q000473 |
| mesh[8].descriptor_ui | D007680 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | pathology |
| mesh[8].descriptor_name | Kidney Neoplasms |
| mesh[9].qualifier_ui | Q000627 |
| mesh[9].descriptor_ui | D000077784 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | therapeutic use |
| mesh[9].descriptor_name | Axitinib |
| mesh[10].qualifier_ui | Q000627 |
| mesh[10].descriptor_ui | D000077210 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | therapeutic use |
| mesh[10].descriptor_name | Sunitinib |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D016016 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Proportional Hazards Models |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D059467 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Transcriptome |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D016019 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Survival Analysis |
| mesh[14].qualifier_ui | Q000627 |
| mesh[14].descriptor_ui | D061067 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | therapeutic use |
| mesh[14].descriptor_name | Antibodies, Monoclonal, Humanized |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D007167 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Immunotherapy |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D000077982 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Progression-Free Survival |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D000098446 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Autoencoder |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D006801 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Humans |
| mesh[19].qualifier_ui | Q000235 |
| mesh[19].descriptor_ui | D002292 |
| mesh[19].is_major_topic | True |
| mesh[19].qualifier_name | genetics |
| mesh[19].descriptor_name | Carcinoma, Renal Cell |
| mesh[20].qualifier_ui | Q000401 |
| mesh[20].descriptor_ui | D002292 |
| mesh[20].is_major_topic | True |
| mesh[20].qualifier_name | mortality |
| mesh[20].descriptor_name | Carcinoma, Renal Cell |
| mesh[21].qualifier_ui | Q000188 |
| mesh[21].descriptor_ui | D002292 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | drug therapy |
| mesh[21].descriptor_name | Carcinoma, Renal Cell |
| mesh[22].qualifier_ui | Q000473 |
| mesh[22].descriptor_ui | D002292 |
| mesh[22].is_major_topic | True |
| mesh[22].qualifier_name | pathology |
| mesh[22].descriptor_name | Carcinoma, Renal Cell |
| mesh[23].qualifier_ui | Q000235 |
| mesh[23].descriptor_ui | D007680 |
| mesh[23].is_major_topic | True |
| mesh[23].qualifier_name | genetics |
| mesh[23].descriptor_name | Kidney Neoplasms |
| mesh[24].qualifier_ui | Q000401 |
| mesh[24].descriptor_ui | D007680 |
| mesh[24].is_major_topic | True |
| mesh[24].qualifier_name | mortality |
| mesh[24].descriptor_name | Kidney Neoplasms |
| mesh[25].qualifier_ui | Q000188 |
| mesh[25].descriptor_ui | D007680 |
| mesh[25].is_major_topic | True |
| mesh[25].qualifier_name | drug therapy |
| mesh[25].descriptor_name | Kidney Neoplasms |
| mesh[26].qualifier_ui | Q000473 |
| mesh[26].descriptor_ui | D007680 |
| mesh[26].is_major_topic | True |
| mesh[26].qualifier_name | pathology |
| mesh[26].descriptor_name | Kidney Neoplasms |
| mesh[27].qualifier_ui | Q000627 |
| mesh[27].descriptor_ui | D000077784 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | therapeutic use |
| mesh[27].descriptor_name | Axitinib |
| mesh[28].qualifier_ui | Q000627 |
| mesh[28].descriptor_ui | D000077210 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | therapeutic use |
| mesh[28].descriptor_name | Sunitinib |
| mesh[29].qualifier_ui | |
| mesh[29].descriptor_ui | D016016 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | |
| mesh[29].descriptor_name | Proportional Hazards Models |
| mesh[30].qualifier_ui | |
| mesh[30].descriptor_ui | D059467 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | |
| mesh[30].descriptor_name | Transcriptome |
| mesh[31].qualifier_ui | |
| mesh[31].descriptor_ui | D016019 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | |
| mesh[31].descriptor_name | Survival Analysis |
| mesh[32].qualifier_ui | Q000627 |
| mesh[32].descriptor_ui | D061067 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | therapeutic use |
| mesh[32].descriptor_name | Antibodies, Monoclonal, Humanized |
| mesh[33].qualifier_ui | |
| mesh[33].descriptor_ui | D007167 |
| mesh[33].is_major_topic | False |
| mesh[33].qualifier_name | |
| mesh[33].descriptor_name | Immunotherapy |
| mesh[34].qualifier_ui | |
| mesh[34].descriptor_ui | D000077982 |
| mesh[34].is_major_topic | False |
| mesh[34].qualifier_name | |
| mesh[34].descriptor_name | Progression-Free Survival |
| mesh[35].qualifier_ui | |
| mesh[35].descriptor_ui | D000098446 |
| mesh[35].is_major_topic | False |
| mesh[35].qualifier_name | |
| mesh[35].descriptor_name | Autoencoder |
| mesh[36].qualifier_ui | |
| mesh[36].descriptor_ui | D006801 |
| mesh[36].is_major_topic | False |
| mesh[36].qualifier_name | |
| mesh[36].descriptor_name | Humans |
| mesh[37].qualifier_ui | Q000627 |
| mesh[37].descriptor_ui | D061067 |
| mesh[37].is_major_topic | False |
| mesh[37].qualifier_name | therapeutic use |
| mesh[37].descriptor_name | Antibodies, Monoclonal, Humanized |
| mesh[38].qualifier_ui | |
| mesh[38].descriptor_ui | D000098446 |
| mesh[38].is_major_topic | True |
| mesh[38].qualifier_name | |
| mesh[38].descriptor_name | Autoencoder |
| mesh[39].qualifier_ui | Q000627 |
| mesh[39].descriptor_ui | D000077784 |
| mesh[39].is_major_topic | False |
| mesh[39].qualifier_name | therapeutic use |
| mesh[39].descriptor_name | Axitinib |
| mesh[40].qualifier_ui | Q000235 |
| mesh[40].descriptor_ui | D002292 |
| mesh[40].is_major_topic | True |
| mesh[40].qualifier_name | genetics |
| mesh[40].descriptor_name | Carcinoma, Renal Cell |
| mesh[41].qualifier_ui | Q000401 |
| mesh[41].descriptor_ui | D002292 |
| mesh[41].is_major_topic | True |
| mesh[41].qualifier_name | mortality |
| mesh[41].descriptor_name | Carcinoma, Renal Cell |
| mesh[42].qualifier_ui | Q000188 |
| mesh[42].descriptor_ui | D002292 |
| mesh[42].is_major_topic | True |
| mesh[42].qualifier_name | drug therapy |
| mesh[42].descriptor_name | Carcinoma, Renal Cell |
| mesh[43].qualifier_ui | Q000473 |
| mesh[43].descriptor_ui | D002292 |
| mesh[43].is_major_topic | True |
| mesh[43].qualifier_name | pathology |
| mesh[43].descriptor_name | Carcinoma, Renal Cell |
| mesh[44].qualifier_ui | |
| mesh[44].descriptor_ui | D007167 |
| mesh[44].is_major_topic | False |
| mesh[44].qualifier_name | |
| mesh[44].descriptor_name | Immunotherapy |
| mesh[45].qualifier_ui | Q000235 |
| mesh[45].descriptor_ui | D007680 |
| mesh[45].is_major_topic | True |
| mesh[45].qualifier_name | genetics |
| mesh[45].descriptor_name | Kidney Neoplasms |
| mesh[46].qualifier_ui | Q000401 |
| mesh[46].descriptor_ui | D007680 |
| mesh[46].is_major_topic | True |
| mesh[46].qualifier_name | mortality |
| mesh[46].descriptor_name | Kidney Neoplasms |
| mesh[47].qualifier_ui | Q000188 |
| mesh[47].descriptor_ui | D007680 |
| mesh[47].is_major_topic | True |
| mesh[47].qualifier_name | drug therapy |
| mesh[47].descriptor_name | Kidney Neoplasms |
| mesh[48].qualifier_ui | Q000473 |
| mesh[48].descriptor_ui | D007680 |
| mesh[48].is_major_topic | True |
| mesh[48].qualifier_name | pathology |
| mesh[48].descriptor_name | Kidney Neoplasms |
| mesh[49].qualifier_ui | |
| mesh[49].descriptor_ui | D000077982 |
| mesh[49].is_major_topic | False |
| mesh[49].qualifier_name | |
| mesh[49].descriptor_name | Progression-Free Survival |
| type | article |
| title | Autoencoder techniques for survival analysis on renal cell carcinoma |
| awards[0].id | https://openalex.org/G6340358623 |
| awards[0].funder_id | https://openalex.org/F4320334923 |
| awards[0].display_name | |
| awards[0].funder_award_id | PI24/01718 |
| awards[0].funder_display_name | Instituto de Salud Carlos III |
| biblio.issue | 5 |
| biblio.volume | 20 |
| biblio.last_page | e0321045 |
| biblio.first_page | e0321045 |
| topics[0].id | https://openalex.org/T10885 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9921000003814697 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Gene expression and cancer classification |
| topics[1].id | https://openalex.org/T10887 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9901000261306763 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Bioinformatics and Genomic Networks |
| topics[2].id | https://openalex.org/T10136 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9896000027656555 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Statistical Methods and Inference |
| funders[0].id | https://openalex.org/F4320334923 |
| funders[0].ror | https://ror.org/00ca2c886 |
| funders[0].display_name | Instituto de Salud Carlos III |
| is_xpac | False |
| apc_list.value | 1805 |
| apc_list.currency | USD |
| apc_list.value_usd | 1805 |
| apc_paid.value | 1805 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1805 |
| concepts[0].id | https://openalex.org/C2781067378 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7688997983932495 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17027399 |
| concepts[0].display_name | Interpretability |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5713142156600952 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5060943961143494 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.48805415630340576 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C50382708 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4646017253398895 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q223218 |
| concepts[4].display_name | Proportional hazards model |
| concepts[5].id | https://openalex.org/C101738243 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4323517084121704 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q786435 |
| concepts[5].display_name | Autoencoder |
| concepts[6].id | https://openalex.org/C10515644 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42884740233421326 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q543310 |
| concepts[6].display_name | Survival analysis |
| concepts[7].id | https://openalex.org/C2776214188 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4267711043357849 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[7].display_name | Inference |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.40164703130722046 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C60644358 |
| concepts[9].level | 1 |
| concepts[9].score | 0.33884477615356445 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q128570 |
| concepts[9].display_name | Bioinformatics |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3208898901939392 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C108583219 |
| concepts[11].level | 2 |
| concepts[11].score | 0.27188050746917725 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[11].display_name | Deep learning |
| concepts[12].id | https://openalex.org/C86803240 |
| concepts[12].level | 0 |
| concepts[12].score | 0.21020305156707764 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[12].display_name | Biology |
| concepts[13].id | https://openalex.org/C71924100 |
| concepts[13].level | 0 |
| concepts[13].score | 0.1921617090702057 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[13].display_name | Medicine |
| concepts[14].id | https://openalex.org/C126322002 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[14].display_name | Internal medicine |
| concepts[15].id | https://openalex.org/C141071460 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q40821 |
| concepts[15].display_name | Surgery |
| keywords[0].id | https://openalex.org/keywords/interpretability |
| keywords[0].score | 0.7688997983932495 |
| keywords[0].display_name | Interpretability |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5713142156600952 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5060943961143494 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.48805415630340576 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/proportional-hazards-model |
| keywords[4].score | 0.4646017253398895 |
| keywords[4].display_name | Proportional hazards model |
| keywords[5].id | https://openalex.org/keywords/autoencoder |
| keywords[5].score | 0.4323517084121704 |
| keywords[5].display_name | Autoencoder |
| keywords[6].id | https://openalex.org/keywords/survival-analysis |
| keywords[6].score | 0.42884740233421326 |
| keywords[6].display_name | Survival analysis |
| keywords[7].id | https://openalex.org/keywords/inference |
| keywords[7].score | 0.4267711043357849 |
| keywords[7].display_name | Inference |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.40164703130722046 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/bioinformatics |
| keywords[9].score | 0.33884477615356445 |
| keywords[9].display_name | Bioinformatics |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.3208898901939392 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/deep-learning |
| keywords[11].score | 0.27188050746917725 |
| keywords[11].display_name | Deep learning |
| keywords[12].id | https://openalex.org/keywords/biology |
| keywords[12].score | 0.21020305156707764 |
| keywords[12].display_name | Biology |
| keywords[13].id | https://openalex.org/keywords/medicine |
| keywords[13].score | 0.1921617090702057 |
| keywords[13].display_name | Medicine |
| language | en |
| locations[0].id | doi:10.1371/journal.pone.0321045 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S202381698 |
| locations[0].source.issn | 1932-6203 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1932-6203 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | PLoS ONE |
| locations[0].source.host_organization | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_name | Public Library of Science |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_lineage_names | Public Library of Science |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | PLOS One |
| locations[0].landing_page_url | https://doi.org/10.1371/journal.pone.0321045 |
| locations[1].id | pmid:40373089 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | PloS one |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40373089 |
| locations[2].id | pmh:oai:RePEc:plo:pone00:0321045 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401271 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | RePEc: Research Papers in Economics |
| locations[2].source.host_organization | https://openalex.org/I77793887 |
| locations[2].source.host_organization_name | Federal Reserve Bank of St. Louis |
| locations[2].source.host_organization_lineage | https://openalex.org/I77793887 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0321045 |
| locations[3].id | pmh:oai:doaj.org/article:c157389d3da948fcb39e1e97b04db993 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | PLoS ONE, Vol 20, Iss 5, p e0321045 (2025) |
| locations[3].landing_page_url | https://doaj.org/article/c157389d3da948fcb39e1e97b04db993 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:12080797 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | PLoS One |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12080797 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5117554169 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Iñigo Sanz Ilundain |
| authorships[0].countries | ES |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I121748325 |
| authorships[0].affiliations[0].raw_affiliation_string | Complutense University of Madrid, Madrid, Spain. |
| authorships[0].institutions[0].id | https://openalex.org/I121748325 |
| authorships[0].institutions[0].ror | https://ror.org/02p0gd045 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I121748325 |
| authorships[0].institutions[0].country_code | ES |
| authorships[0].institutions[0].display_name | Universidad Complutense de Madrid |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Iñigo Sanz Ilundain |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Complutense University of Madrid, Madrid, Spain. |
| authorships[1].author.id | https://openalex.org/A5117359485 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1555-7229 |
| authorships[1].author.display_name | Laura Hernández-Lorenzo |
| authorships[1].countries | ES |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I121748325 |
| authorships[1].affiliations[0].raw_affiliation_string | Complutense University of Madrid, Madrid, Spain. |
| authorships[1].institutions[0].id | https://openalex.org/I121748325 |
| authorships[1].institutions[0].ror | https://ror.org/02p0gd045 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I121748325 |
| authorships[1].institutions[0].country_code | ES |
| authorships[1].institutions[0].display_name | Universidad Complutense de Madrid |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Laura Hernández-Lorenzo |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Complutense University of Madrid, Madrid, Spain. |
| authorships[2].author.id | https://openalex.org/A5019181961 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8750-7338 |
| authorships[2].author.display_name | Cristina Rodríguez‐Antona |
| authorships[2].countries | ES |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I134820265, https://openalex.org/I63634437 |
| authorships[2].affiliations[0].raw_affiliation_string | CSIC/UAM, Madrid, Spain. |
| authorships[2].institutions[0].id | https://openalex.org/I134820265 |
| authorships[2].institutions[0].ror | https://ror.org/02gfc7t72 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I134820265 |
| authorships[2].institutions[0].country_code | ES |
| authorships[2].institutions[0].display_name | Consejo Superior de Investigaciones Científicas |
| authorships[2].institutions[1].id | https://openalex.org/I63634437 |
| authorships[2].institutions[1].ror | https://ror.org/01cby8j38 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I63634437 |
| authorships[2].institutions[1].country_code | ES |
| authorships[2].institutions[1].display_name | Universidad Autónoma de Madrid |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Cristina Rodríguez-Antona |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | CSIC/UAM, Madrid, Spain. |
| authorships[3].author.id | https://openalex.org/A5004741487 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7731-3601 |
| authorships[3].author.display_name | Jesús García-Donás |
| authorships[3].countries | ES |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210122338, https://openalex.org/I4210137474 |
| authorships[3].affiliations[0].raw_affiliation_string | HM CIOCC Madrid, Hospital Universitario HM Sanchinarro, HM Hospitales, Madrid, Spain. |
| authorships[3].institutions[0].id | https://openalex.org/I4210122338 |
| authorships[3].institutions[0].ror | https://ror.org/01ynvwr63 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210122338 |
| authorships[3].institutions[0].country_code | ES |
| authorships[3].institutions[0].display_name | HM Hospitales |
| authorships[3].institutions[1].id | https://openalex.org/I4210137474 |
| authorships[3].institutions[1].ror | https://ror.org/04jep6391 |
| authorships[3].institutions[1].type | healthcare |
| authorships[3].institutions[1].lineage | https://openalex.org/I4210122338, https://openalex.org/I4210137474 |
| authorships[3].institutions[1].country_code | ES |
| authorships[3].institutions[1].display_name | Hospital Universitario HM Sanchinarro |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jesús García-Donas |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | HM CIOCC Madrid, Hospital Universitario HM Sanchinarro, HM Hospitales, Madrid, Spain. |
| authorships[4].author.id | https://openalex.org/A5067064660 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7236-5330 |
| authorships[4].author.display_name | José L. Ayala |
| authorships[4].countries | ES |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I121748325 |
| authorships[4].affiliations[0].raw_affiliation_string | Complutense University of Madrid, Madrid, Spain. |
| authorships[4].institutions[0].id | https://openalex.org/I121748325 |
| authorships[4].institutions[0].ror | https://ror.org/02p0gd045 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I121748325 |
| authorships[4].institutions[0].country_code | ES |
| authorships[4].institutions[0].display_name | Universidad Complutense de Madrid |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | José L Ayala |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Complutense University of Madrid, Madrid, Spain. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1371/journal.pone.0321045 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Autoencoder techniques for survival analysis on renal cell carcinoma |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10885 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9921000003814697 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Gene expression and cancer classification |
| related_works | https://openalex.org/W2797301068, https://openalex.org/W2010631330, https://openalex.org/W2006470775, https://openalex.org/W2581226876, https://openalex.org/W4225134093, https://openalex.org/W4380269519, https://openalex.org/W3136232645, https://openalex.org/W4380448775, https://openalex.org/W1554732404, https://openalex.org/W2026784993 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | doi:10.1371/journal.pone.0321045 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S202381698 |
| best_oa_location.source.issn | 1932-6203 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1932-6203 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | PLoS ONE |
| best_oa_location.source.host_organization | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_name | Public Library of Science |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_lineage_names | Public Library of Science |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | PLOS One |
| best_oa_location.landing_page_url | https://doi.org/10.1371/journal.pone.0321045 |
| primary_location.id | doi:10.1371/journal.pone.0321045 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S202381698 |
| primary_location.source.issn | 1932-6203 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1932-6203 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | PLoS ONE |
| primary_location.source.host_organization | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_name | Public Library of Science |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_lineage_names | Public Library of Science |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | PLOS One |
| primary_location.landing_page_url | https://doi.org/10.1371/journal.pone.0321045 |
| publication_date | 2025-05-15 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4292693193, https://openalex.org/W6842511743, https://openalex.org/W4285078605, https://openalex.org/W3017237457, https://openalex.org/W2809184459, https://openalex.org/W3087223457, https://openalex.org/W2040814250, https://openalex.org/W6643679371, https://openalex.org/W2905098066, https://openalex.org/W2963232127, https://openalex.org/W4318482100, https://openalex.org/W4382877140, https://openalex.org/W3083058958, https://openalex.org/W2971474301, https://openalex.org/W2537679995, https://openalex.org/W2143965359, https://openalex.org/W16016350, https://openalex.org/W4323545743, https://openalex.org/W2025768430, https://openalex.org/W2948978827, https://openalex.org/W2887773909, https://openalex.org/W4281555610, https://openalex.org/W1980179199, https://openalex.org/W4225329013, https://openalex.org/W6766781221, https://openalex.org/W2132022337, https://openalex.org/W6785059380, https://openalex.org/W3097349486, https://openalex.org/W1972283434, https://openalex.org/W2092939357, https://openalex.org/W2510850936, https://openalex.org/W2883554196, https://openalex.org/W2801183969, https://openalex.org/W4295752719, https://openalex.org/W1974944535, https://openalex.org/W2755088640, https://openalex.org/W4308947196, https://openalex.org/W2990138404, https://openalex.org/W4290876361 |
| referenced_works_count | 39 |
| abstract_inverted_index.+ | 95 |
| abstract_inverted_index.a | 98, 109, 171 |
| abstract_inverted_index.In | 76 |
| abstract_inverted_index.We | 107 |
| abstract_inverted_index.as | 263, 267 |
| abstract_inverted_index.at | 229, 239 |
| abstract_inverted_index.by | 83 |
| abstract_inverted_index.in | 5, 14, 39, 52, 62, 180, 192, 281 |
| abstract_inverted_index.is | 1, 32, 67, 236 |
| abstract_inverted_index.of | 12, 21, 29, 34, 59, 73, 89, 147, 218, 254, 279 |
| abstract_inverted_index.on | 114 |
| abstract_inverted_index.or | 26 |
| abstract_inverted_index.to | 46, 124, 154, 201, 270 |
| abstract_inverted_index.we | 79, 150, 185 |
| abstract_inverted_index.COX | 116 |
| abstract_inverted_index.Our | 135 |
| abstract_inverted_index.TKI | 99 |
| abstract_inverted_index.The | 212, 257 |
| abstract_inverted_index.and | 44, 56, 97, 131, 141, 159, 196, 251, 265 |
| abstract_inverted_index.are | 50, 205, 220 |
| abstract_inverted_index.for | 223 |
| abstract_inverted_index.its | 160 |
| abstract_inverted_index.one | 33 |
| abstract_inverted_index.our | 152 |
| abstract_inverted_index.the | 2, 9, 35, 57, 63, 71, 85, 115, 145, 176, 187, 193, 233, 252, 277 |
| abstract_inverted_index.ACE2 | 266 |
| abstract_inverted_index.LRP2 | 264 |
| abstract_inverted_index.This | 274 |
| abstract_inverted_index.both | 156, 248 |
| abstract_inverted_index.cell | 272 |
| abstract_inverted_index.data | 49, 66, 88, 158, 195, 284 |
| abstract_inverted_index.each | 126 |
| abstract_inverted_index.gene | 30 |
| abstract_inverted_index.gold | 3 |
| abstract_inverted_index.into | 101 |
| abstract_inverted_index.more | 172, 237 |
| abstract_inverted_index.most | 36, 206 |
| abstract_inverted_index.real | 10 |
| abstract_inverted_index.such | 74, 262 |
| abstract_inverted_index.that | 215 |
| abstract_inverted_index.this | 77, 81 |
| abstract_inverted_index.when | 7 |
| abstract_inverted_index.with | 92, 121, 208 |
| abstract_inverted_index.(PFS) | 130 |
| abstract_inverted_index.(like | 23 |
| abstract_inverted_index.Given | 144 |
| abstract_inverted_index.Thus, | 17 |
| abstract_inverted_index.based | 113 |
| abstract_inverted_index.data, | 149 |
| abstract_inverted_index.edges | 164 |
| abstract_inverted_index.excel | 228 |
| abstract_inverted_index.genes | 191, 204, 261 |
| abstract_inverted_index.graph | 161 |
| abstract_inverted_index.model | 153 |
| abstract_inverted_index.often | 68 |
| abstract_inverted_index.renal | 271 |
| abstract_inverted_index.their | 142, 197 |
| abstract_inverted_index.these | 245 |
| abstract_inverted_index.types | 217 |
| abstract_inverted_index.using | 105 |
| abstract_inverted_index.where | 163 |
| abstract_inverted_index.which | 203 |
| abstract_inverted_index.while | 232 |
| abstract_inverted_index.better | 221 |
| abstract_inverted_index.field, | 65 |
| abstract_inverted_index.fields | 38 |
| abstract_inverted_index.genes, | 169 |
| abstract_inverted_index.highly | 268 |
| abstract_inverted_index.impact | 11 |
| abstract_inverted_index.latent | 198, 210, 255 |
| abstract_inverted_index.model, | 119 |
| abstract_inverted_index.models | 259 |
| abstract_inverted_index.mutual | 188 |
| abstract_inverted_index.neural | 181 |
| abstract_inverted_index.sparse | 234 |
| abstract_inverted_index.study, | 78 |
| abstract_inverted_index.suited | 222 |
| abstract_inverted_index.tasks: | 225 |
| abstract_inverted_index.Hazards | 118 |
| abstract_inverted_index.analyze | 47 |
| abstract_inverted_index.applied | 108 |
| abstract_inverted_index.between | 168, 190 |
| abstract_inverted_index.clarify | 202 |
| abstract_inverted_index.coupled | 120 |
| abstract_inverted_index.crucial | 51 |
| abstract_inverted_index.current | 40 |
| abstract_inverted_index.disease | 54 |
| abstract_inverted_index.feature | 199 |
| abstract_inverted_index.genetic | 24 |
| abstract_inverted_index.latent, | 102 |
| abstract_inverted_index.medical | 64 |
| abstract_inverted_index.methods | 43 |
| abstract_inverted_index.metrics | 45 |
| abstract_inverted_index.penalty | 139 |
| abstract_inverted_index.predict | 125 |
| abstract_inverted_index.quality | 250 |
| abstract_inverted_index.results | 213 |
| abstract_inverted_index.tabular | 157 |
| abstract_inverted_index.treated | 91 |
| abstract_inverted_index.utility | 278 |
| abstract_inverted_index.variant | 235 |
| abstract_inverted_index.various | 138 |
| abstract_inverted_index.However, | 61 |
| abstract_inverted_index.Survival | 0, 129 |
| abstract_inverted_index.accurate | 230 |
| abstract_inverted_index.analysis | 136 |
| abstract_inverted_index.analyzed | 186 |
| abstract_inverted_index.approach | 112 |
| abstract_inverted_index.enhances | 247 |
| abstract_inverted_index.explored | 137 |
| abstract_inverted_index.extended | 151 |
| abstract_inverted_index.features | 104 |
| abstract_inverted_index.indicate | 214 |
| abstract_inverted_index.inherent | 179 |
| abstract_inverted_index.managing | 282 |
| abstract_inverted_index.offering | 170 |
| abstract_inverted_index.oncology | 6 |
| abstract_inverted_index.original | 194 |
| abstract_inverted_index.outcome. | 16 |
| abstract_inverted_index.patients | 15, 90 |
| abstract_inverted_index.patterns | 28 |
| abstract_inverted_index.relevant | 37, 269 |
| abstract_inverted_index.research | 275 |
| abstract_inverted_index.specific | 209 |
| abstract_inverted_index.standard | 4 |
| abstract_inverted_index.survival | 22, 133 |
| abstract_inverted_index.variant, | 162 |
| abstract_inverted_index.(avelumab | 94 |
| abstract_inverted_index.addressed | 80 |
| abstract_inverted_index.approach. | 174 |
| abstract_inverted_index.axitinib) | 96 |
| abstract_inverted_index.challenge | 82 |
| abstract_inverted_index.combining | 244 |
| abstract_inverted_index.denoising | 226 |
| abstract_inverted_index.determine | 132 |
| abstract_inverted_index.different | 216, 224 |
| abstract_inverted_index.effective | 238 |
| abstract_inverted_index.features. | 256 |
| abstract_inverted_index.molecular | 19 |
| abstract_inverted_index.networks, | 182 |
| abstract_inverted_index.penalties | 246 |
| abstract_inverted_index.problems. | 285 |
| abstract_inverted_index.producing | 240 |
| abstract_inverted_index.represent | 165 |
| abstract_inverted_index.research. | 41 |
| abstract_inverted_index.therapies | 13 |
| abstract_inverted_index.associated | 207 |
| abstract_inverted_index.carcinoma. | 273 |
| abstract_inverted_index.challenges | 178 |
| abstract_inverted_index.complexity | 146 |
| abstract_inverted_index.estimator, | 123 |
| abstract_inverted_index.functions. | 134 |
| abstract_inverted_index.identified | 260 |
| abstract_inverted_index.insightful | 173 |
| abstract_inverted_index.meaningful | 103, 241 |
| abstract_inverted_index.predictors | 20 |
| abstract_inverted_index.variables. | 211 |
| abstract_inverted_index.(sunitinib) | 100 |
| abstract_inverted_index.Breslow’s | 122 |
| abstract_inverted_index.Recognizing | 175 |
| abstract_inverted_index.Statistical | 42 |
| abstract_inverted_index.alterations | 25 |
| abstract_inverted_index.application | 72 |
| abstract_inverted_index.compressing | 84 |
| abstract_inverted_index.determining | 8 |
| abstract_inverted_index.expression) | 31 |
| abstract_inverted_index.identifying | 18 |
| abstract_inverted_index.incorporate | 155 |
| abstract_inverted_index.information | 189 |
| abstract_inverted_index.patient’s | 127 |
| abstract_inverted_index.progression | 55 |
| abstract_inverted_index.statistical | 111 |
| abstract_inverted_index.treatments. | 60 |
| abstract_inverted_index.underscores | 276 |
| abstract_inverted_index.Proportional | 117 |
| abstract_inverted_index.autoencoders | 219, 227, 280 |
| abstract_inverted_index.complicating | 70 |
| abstract_inverted_index.interactions | 167 |
| abstract_inverted_index.particularly | 183 |
| abstract_inverted_index.Additionally, | 243 |
| abstract_inverted_index.autoencoders, | 184 |
| abstract_inverted_index.autoencoders. | 106 |
| abstract_inverted_index.combinations. | 143 |
| abstract_inverted_index.effectiveness | 58 |
| abstract_inverted_index.immunotherapy | 93 |
| abstract_inverted_index.interpretable | 258 |
| abstract_inverted_index.time-to-event | 48 |
| abstract_inverted_index.understanding | 53 |
| abstract_inverted_index.configurations | 140 |
| abstract_inverted_index.methodologies. | 75 |
| abstract_inverted_index.reconstruction | 249 |
| abstract_inverted_index.transcriptomic | 27, 87, 148 |
| abstract_inverted_index.protein-protein | 166 |
| abstract_inverted_index.reconstruction, | 231 |
| abstract_inverted_index.representations | 200 |
| abstract_inverted_index.semi-parametric | 110 |
| abstract_inverted_index.Progression-Free | 128 |
| abstract_inverted_index.high-dimensional | 86, 283 |
| abstract_inverted_index.interpretability | 177, 253 |
| abstract_inverted_index.representations. | 242 |
| abstract_inverted_index.high-dimensional, | 69 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.4399999976158142 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.79999067 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |