Automated CAD Modeling Sequence Generation from Text Descriptions via Transformer-Based Large Language Models Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2505.19490
Designing complex computer-aided design (CAD) models is often time-consuming due to challenges such as computational inefficiency and the difficulty of generating precise models. We propose a novel language-guided framework for industrial design automation to address these issues, integrating large language models (LLMs) with computer-automated design (CAutoD).Through this framework, CAD models are automatically generated from parameters and appearance descriptions, supporting the automation of design tasks during the detailed CAD design phase. Our approach introduces three key innovations: (1) a semi-automated data annotation pipeline that leverages LLMs and vision-language large models (VLLMs) to generate high-quality parameters and appearance descriptions; (2) a Transformer-based CAD generator (TCADGen) that predicts modeling sequences via dual-channel feature aggregation; (3) an enhanced CAD modeling generation model, called CADLLM, that is designed to refine the generated sequences by incorporating the confidence scores from TCADGen. Experimental results demonstrate that the proposed approach outperforms traditional methods in both accuracy and efficiency, providing a powerful tool for automating industrial workflows and generating complex CAD models from textual prompts. The code is available at https://jianxliao.github.io/cadllm-page/
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2505.19490
- https://arxiv.org/pdf/2505.19490
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414586338
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414586338Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2505.19490Digital Object Identifier
- Title
-
Automated CAD Modeling Sequence Generation from Text Descriptions via Transformer-Based Large Language ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-26Full publication date if available
- Authors
-
Jianxing Liao, Junyan Xu, Yongqi Sun, Matthew F. Tang, Sailing He, Jau‐Chyn Liao, Shui Yu, Yun Li, Xiao HanList of authors in order
- Landing page
-
https://arxiv.org/abs/2505.19490Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2505.19490Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2505.19490Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414586338 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2505.19490 |
| ids.doi | https://doi.org/10.48550/arxiv.2505.19490 |
| ids.openalex | https://openalex.org/W4414586338 |
| fwci | |
| type | preprint |
| title | Automated CAD Modeling Sequence Generation from Text Descriptions via Transformer-Based Large Language Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10181 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.982699990272522 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Natural Language Processing Techniques |
| topics[1].id | https://openalex.org/T10601 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9704999923706055 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Handwritten Text Recognition Techniques |
| topics[2].id | https://openalex.org/T14339 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9269999861717224 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image Processing and 3D Reconstruction |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2505.19490 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2505.19490 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2505.19490 |
| locations[1].id | doi:10.48550/arxiv.2505.19490 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2505.19490 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5073845819 |
| authorships[0].author.orcid | https://orcid.org/0009-0002-5474-4163 |
| authorships[0].author.display_name | Jianxing Liao |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Liao, Jianxing |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5043282426 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3789-2319 |
| authorships[1].author.display_name | Junyan Xu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xu, Junyan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100649791 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2155-0293 |
| authorships[2].author.display_name | Yongqi Sun |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sun, Yatao |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5042357347 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5858-5126 |
| authorships[3].author.display_name | Matthew F. Tang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tang, Maowen |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5049549826 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3401-1125 |
| authorships[4].author.display_name | Sailing He |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | He, Sicheng |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5016840889 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5985-2994 |
| authorships[5].author.display_name | Jau‐Chyn Liao |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Liao, Jingxian |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5005228053 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-4485-6743 |
| authorships[6].author.display_name | Shui Yu |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Yu, Shui |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5107860546 |
| authorships[7].author.orcid | https://orcid.org/0009-0008-9740-5130 |
| authorships[7].author.display_name | Yun Li |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Li, Yun |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5100634186 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-3787-3529 |
| authorships[8].author.display_name | Xiao Han |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Xiao, Hongguan |
| authorships[8].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2505.19490 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Automated CAD Modeling Sequence Generation from Text Descriptions via Transformer-Based Large Language Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10181 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.982699990272522 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Natural Language Processing Techniques |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2505.19490 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2505.19490 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2505.19490 |
| primary_location.id | pmh:oai:arXiv.org:2505.19490 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2505.19490 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2505.19490 |
| publication_date | 2025-05-26 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 25, 77, 98, 151 |
| abstract_inverted_index.We | 23 |
| abstract_inverted_index.an | 112 |
| abstract_inverted_index.as | 13 |
| abstract_inverted_index.at | 170 |
| abstract_inverted_index.by | 128 |
| abstract_inverted_index.in | 145 |
| abstract_inverted_index.is | 6, 121, 168 |
| abstract_inverted_index.of | 19, 61 |
| abstract_inverted_index.to | 10, 33, 90, 123 |
| abstract_inverted_index.(1) | 76 |
| abstract_inverted_index.(2) | 97 |
| abstract_inverted_index.(3) | 111 |
| abstract_inverted_index.CAD | 48, 67, 100, 114, 161 |
| abstract_inverted_index.Our | 70 |
| abstract_inverted_index.The | 166 |
| abstract_inverted_index.and | 16, 55, 85, 94, 148, 158 |
| abstract_inverted_index.are | 50 |
| abstract_inverted_index.due | 9 |
| abstract_inverted_index.for | 29, 154 |
| abstract_inverted_index.key | 74 |
| abstract_inverted_index.the | 17, 59, 65, 125, 130, 139 |
| abstract_inverted_index.via | 107 |
| abstract_inverted_index.LLMs | 84 |
| abstract_inverted_index.both | 146 |
| abstract_inverted_index.code | 167 |
| abstract_inverted_index.data | 79 |
| abstract_inverted_index.from | 53, 133, 163 |
| abstract_inverted_index.such | 12 |
| abstract_inverted_index.that | 82, 103, 120, 138 |
| abstract_inverted_index.this | 46 |
| abstract_inverted_index.tool | 153 |
| abstract_inverted_index.with | 42 |
| abstract_inverted_index.(CAD) | 4 |
| abstract_inverted_index.large | 38, 87 |
| abstract_inverted_index.novel | 26 |
| abstract_inverted_index.often | 7 |
| abstract_inverted_index.tasks | 63 |
| abstract_inverted_index.these | 35 |
| abstract_inverted_index.three | 73 |
| abstract_inverted_index.(LLMs) | 41 |
| abstract_inverted_index.called | 118 |
| abstract_inverted_index.design | 3, 31, 44, 62, 68 |
| abstract_inverted_index.during | 64 |
| abstract_inverted_index.model, | 117 |
| abstract_inverted_index.models | 5, 40, 49, 88, 162 |
| abstract_inverted_index.phase. | 69 |
| abstract_inverted_index.refine | 124 |
| abstract_inverted_index.scores | 132 |
| abstract_inverted_index.(VLLMs) | 89 |
| abstract_inverted_index.CADLLM, | 119 |
| abstract_inverted_index.address | 34 |
| abstract_inverted_index.complex | 1, 160 |
| abstract_inverted_index.feature | 109 |
| abstract_inverted_index.issues, | 36 |
| abstract_inverted_index.methods | 144 |
| abstract_inverted_index.models. | 22 |
| abstract_inverted_index.precise | 21 |
| abstract_inverted_index.propose | 24 |
| abstract_inverted_index.results | 136 |
| abstract_inverted_index.textual | 164 |
| abstract_inverted_index.TCADGen. | 134 |
| abstract_inverted_index.accuracy | 147 |
| abstract_inverted_index.approach | 71, 141 |
| abstract_inverted_index.designed | 122 |
| abstract_inverted_index.detailed | 66 |
| abstract_inverted_index.enhanced | 113 |
| abstract_inverted_index.generate | 91 |
| abstract_inverted_index.language | 39 |
| abstract_inverted_index.modeling | 105, 115 |
| abstract_inverted_index.pipeline | 81 |
| abstract_inverted_index.powerful | 152 |
| abstract_inverted_index.predicts | 104 |
| abstract_inverted_index.prompts. | 165 |
| abstract_inverted_index.proposed | 140 |
| abstract_inverted_index.(TCADGen) | 102 |
| abstract_inverted_index.Designing | 0 |
| abstract_inverted_index.available | 169 |
| abstract_inverted_index.framework | 28 |
| abstract_inverted_index.generated | 52, 126 |
| abstract_inverted_index.generator | 101 |
| abstract_inverted_index.leverages | 83 |
| abstract_inverted_index.providing | 150 |
| abstract_inverted_index.sequences | 106, 127 |
| abstract_inverted_index.workflows | 157 |
| abstract_inverted_index.annotation | 80 |
| abstract_inverted_index.appearance | 56, 95 |
| abstract_inverted_index.automating | 155 |
| abstract_inverted_index.automation | 32, 60 |
| abstract_inverted_index.challenges | 11 |
| abstract_inverted_index.confidence | 131 |
| abstract_inverted_index.difficulty | 18 |
| abstract_inverted_index.framework, | 47 |
| abstract_inverted_index.generating | 20, 159 |
| abstract_inverted_index.generation | 116 |
| abstract_inverted_index.industrial | 30, 156 |
| abstract_inverted_index.introduces | 72 |
| abstract_inverted_index.parameters | 54, 93 |
| abstract_inverted_index.supporting | 58 |
| abstract_inverted_index.demonstrate | 137 |
| abstract_inverted_index.efficiency, | 149 |
| abstract_inverted_index.integrating | 37 |
| abstract_inverted_index.outperforms | 142 |
| abstract_inverted_index.traditional | 143 |
| abstract_inverted_index.Experimental | 135 |
| abstract_inverted_index.aggregation; | 110 |
| abstract_inverted_index.dual-channel | 108 |
| abstract_inverted_index.high-quality | 92 |
| abstract_inverted_index.inefficiency | 15 |
| abstract_inverted_index.innovations: | 75 |
| abstract_inverted_index.automatically | 51 |
| abstract_inverted_index.computational | 14 |
| abstract_inverted_index.descriptions, | 57 |
| abstract_inverted_index.descriptions; | 96 |
| abstract_inverted_index.incorporating | 129 |
| abstract_inverted_index.computer-aided | 2 |
| abstract_inverted_index.semi-automated | 78 |
| abstract_inverted_index.time-consuming | 8 |
| abstract_inverted_index.language-guided | 27 |
| abstract_inverted_index.vision-language | 86 |
| abstract_inverted_index.(CAutoD).Through | 45 |
| abstract_inverted_index.Transformer-based | 99 |
| abstract_inverted_index.computer-automated | 43 |
| abstract_inverted_index.https://jianxliao.github.io/cadllm-page/ | 171 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile |