Automated Cardiac Disease Prediction Using Composite GAN and DeepLab Model Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/access.2025.3589529
Cardiovascular diseases remain the leading global cause of mortality, resulting in over 17 million deaths annually. Manual cardiac image interpretation is often subjective and varies significantly among clinicians. However, constraints like limited annotation and model generalization persist. We introduce GenDeep, a novel framework integrating an unsupervised Generative Adversarial Network (GAN) and DeepLab model for robust cardiac pathology classification from cine-MRI scans. The GAN component performs data augmentation to synthesize realistic pathological imagery, overcoming dataset constraints. Meanwhile, the DeepLab segmentation network exploits inter-slice spatial contexts for precise anatomical quantification. GenDeep is trained on over 4000 expert-annotated scans from the ACDC dataset, leveraging Apache Spark and Hadoop for efficient parallel data loading and preprocessing. The Generator maps noise vectors to synthetic MRIs while the Discriminator predicts disease labels and classifies images as real/fake. Weights are updated through backpropagation to refine image realism and classification accuracy. Once trained, the Generator produces additional pathological data to boost model generalization. The Discriminator then serves as the diagnostic classifier based on ventricular morphology from DeepLab segmentation. Extensive comparative testing on a held-out test set achieves 97% accuracy and 93% F1 Score, significantly exceeding benchmarks. Smooth convergence is verified with a low 2.21 MSE. These results highlight the effective integration of generative learning and segmentation for automated and reliable cardiac diagnosis.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2025.3589529
- OA Status
- gold
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413074730
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413074730Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2025.3589529Digital Object Identifier
- Title
-
Automated Cardiac Disease Prediction Using Composite GAN and DeepLab ModelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Sohail Jabbar, Umar Raza, Muhammad Asif Habib, Muhammad Farhan, Saqib SaeedList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2025.3589529Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2025.3589529Direct OA link when available
- Concepts
-
Composite number, Computer science, AlgorithmTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413074730 |
|---|---|
| doi | https://doi.org/10.1109/access.2025.3589529 |
| ids.doi | https://doi.org/10.1109/access.2025.3589529 |
| ids.openalex | https://openalex.org/W4413074730 |
| fwci | 0.0 |
| type | article |
| title | Automated Cardiac Disease Prediction Using Composite GAN and DeepLab Model |
| biblio.issue | |
| biblio.volume | 13 |
| biblio.last_page | 138327 |
| biblio.first_page | 138313 |
| topics[0].id | https://openalex.org/T11396 |
| topics[0].field.id | https://openalex.org/fields/36 |
| topics[0].field.display_name | Health Professions |
| topics[0].score | 0.8169000148773193 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3605 |
| topics[0].subfield.display_name | Health Information Management |
| topics[0].display_name | Artificial Intelligence in Healthcare |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C104779481 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6358674764633179 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q50707 |
| concepts[0].display_name | Composite number |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6064658761024475 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C11413529 |
| concepts[2].level | 1 |
| concepts[2].score | 0.20400318503379822 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[2].display_name | Algorithm |
| keywords[0].id | https://openalex.org/keywords/composite-number |
| keywords[0].score | 0.6358674764633179 |
| keywords[0].display_name | Composite number |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6064658761024475 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/algorithm |
| keywords[2].score | 0.20400318503379822 |
| keywords[2].display_name | Algorithm |
| language | en |
| locations[0].id | doi:10.1109/access.2025.3589529 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2025.3589529 |
| locations[1].id | pmh:oai:doaj.org/article:9c25be3371124c5db7d243a24966c920 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 13, Pp 138313-138327 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/9c25be3371124c5db7d243a24966c920 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5089648638 |
| authorships[0].author.orcid | https://orcid.org/0009-0007-5805-0659 |
| authorships[0].author.display_name | Sohail Jabbar |
| authorships[0].countries | SA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I240666556 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia |
| authorships[0].institutions[0].id | https://openalex.org/I240666556 |
| authorships[0].institutions[0].ror | https://ror.org/05gxjyb39 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I240666556 |
| authorships[0].institutions[0].country_code | SA |
| authorships[0].institutions[0].display_name | Imam Mohammad ibn Saud Islamic University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sohail Jabbar |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia |
| authorships[1].author.id | https://openalex.org/A5039128929 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9810-1285 |
| authorships[1].author.display_name | Umar Raza |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I11983389 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Engineering, Manchester Metropolitan University, Manchester, United Kingdom |
| authorships[1].institutions[0].id | https://openalex.org/I11983389 |
| authorships[1].institutions[0].ror | https://ror.org/02hstj355 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I11983389 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Manchester Metropolitan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Umar Raza |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Engineering, Manchester Metropolitan University, Manchester, United Kingdom |
| authorships[2].author.id | https://openalex.org/A5089348789 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2675-1975 |
| authorships[2].author.display_name | Muhammad Asif Habib |
| authorships[2].countries | SA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I240666556 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia |
| authorships[2].institutions[0].id | https://openalex.org/I240666556 |
| authorships[2].institutions[0].ror | https://ror.org/05gxjyb39 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I240666556 |
| authorships[2].institutions[0].country_code | SA |
| authorships[2].institutions[0].display_name | Imam Mohammad ibn Saud Islamic University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Muhammad Asif Habib |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia |
| authorships[3].author.id | https://openalex.org/A5075242305 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3649-5717 |
| authorships[3].author.display_name | Muhammad Farhan |
| authorships[3].countries | PK |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I16076960 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science, COMSATS University Islamabad, Sahiwal Campus, Pakistan |
| authorships[3].institutions[0].id | https://openalex.org/I16076960 |
| authorships[3].institutions[0].ror | https://ror.org/00nqqvk19 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I16076960 |
| authorships[3].institutions[0].country_code | PK |
| authorships[3].institutions[0].display_name | COMSATS University Islamabad |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Muhammad Farhan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science, COMSATS University Islamabad, Sahiwal Campus, Pakistan |
| authorships[4].author.id | https://openalex.org/A5087762260 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7136-3480 |
| authorships[4].author.display_name | Saqib Saeed |
| authorships[4].countries | SA |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I76571253 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Computer Information Systems, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia |
| authorships[4].institutions[0].id | https://openalex.org/I76571253 |
| authorships[4].institutions[0].ror | https://ror.org/038cy8j79 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I76571253 |
| authorships[4].institutions[0].country_code | SA |
| authorships[4].institutions[0].display_name | Imam Abdulrahman Bin Faisal University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Saqib Saeed |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Computer Information Systems, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2025.3589529 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Automated Cardiac Disease Prediction Using Composite GAN and DeepLab Model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11396 |
| primary_topic.field.id | https://openalex.org/fields/36 |
| primary_topic.field.display_name | Health Professions |
| primary_topic.score | 0.8169000148773193 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3605 |
| primary_topic.subfield.display_name | Health Information Management |
| primary_topic.display_name | Artificial Intelligence in Healthcare |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2025.3589529 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2025.3589529 |
| primary_location.id | doi:10.1109/access.2025.3589529 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2025.3589529 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3165720345, https://openalex.org/W2989281995, https://openalex.org/W4284688381, https://openalex.org/W2978707514, https://openalex.org/W4383815351, https://openalex.org/W4318483790, https://openalex.org/W4289277715, https://openalex.org/W4324387599, https://openalex.org/W4386498973, https://openalex.org/W3025329028, https://openalex.org/W4372204067, https://openalex.org/W3130131298, https://openalex.org/W2949767632, https://openalex.org/W3136882821, https://openalex.org/W4319440851, https://openalex.org/W4318769919, https://openalex.org/W3187796790, https://openalex.org/W4327896704, https://openalex.org/W4297509995, https://openalex.org/W4366502776, https://openalex.org/W3121644786, https://openalex.org/W6792183989, https://openalex.org/W2521029800, https://openalex.org/W4221058841 |
| referenced_works_count | 24 |
| abstract_inverted_index.a | 40, 174, 193 |
| abstract_inverted_index.17 | 12 |
| abstract_inverted_index.F1 | 183 |
| abstract_inverted_index.We | 37 |
| abstract_inverted_index.an | 44 |
| abstract_inverted_index.as | 129, 159 |
| abstract_inverted_index.in | 10 |
| abstract_inverted_index.is | 20, 89, 190 |
| abstract_inverted_index.of | 7, 203 |
| abstract_inverted_index.on | 91, 164, 173 |
| abstract_inverted_index.to | 67, 117, 136, 151 |
| abstract_inverted_index.93% | 182 |
| abstract_inverted_index.97% | 179 |
| abstract_inverted_index.GAN | 62 |
| abstract_inverted_index.The | 61, 112, 155 |
| abstract_inverted_index.and | 23, 33, 50, 103, 110, 126, 140, 181, 206, 210 |
| abstract_inverted_index.are | 132 |
| abstract_inverted_index.for | 53, 84, 105, 208 |
| abstract_inverted_index.low | 194 |
| abstract_inverted_index.set | 177 |
| abstract_inverted_index.the | 3, 76, 97, 121, 145, 160, 200 |
| abstract_inverted_index.2.21 | 195 |
| abstract_inverted_index.4000 | 93 |
| abstract_inverted_index.ACDC | 98 |
| abstract_inverted_index.MRIs | 119 |
| abstract_inverted_index.MSE. | 196 |
| abstract_inverted_index.Once | 143 |
| abstract_inverted_index.data | 65, 108, 150 |
| abstract_inverted_index.from | 58, 96, 167 |
| abstract_inverted_index.like | 30 |
| abstract_inverted_index.maps | 114 |
| abstract_inverted_index.over | 11, 92 |
| abstract_inverted_index.test | 176 |
| abstract_inverted_index.then | 157 |
| abstract_inverted_index.with | 192 |
| abstract_inverted_index.(GAN) | 49 |
| abstract_inverted_index.Spark | 102 |
| abstract_inverted_index.These | 197 |
| abstract_inverted_index.among | 26 |
| abstract_inverted_index.based | 163 |
| abstract_inverted_index.boost | 152 |
| abstract_inverted_index.cause | 6 |
| abstract_inverted_index.image | 18, 138 |
| abstract_inverted_index.model | 34, 52, 153 |
| abstract_inverted_index.noise | 115 |
| abstract_inverted_index.novel | 41 |
| abstract_inverted_index.often | 21 |
| abstract_inverted_index.scans | 95 |
| abstract_inverted_index.while | 120 |
| abstract_inverted_index.Apache | 101 |
| abstract_inverted_index.Hadoop | 104 |
| abstract_inverted_index.Manual | 16 |
| abstract_inverted_index.Score, | 184 |
| abstract_inverted_index.Smooth | 188 |
| abstract_inverted_index.deaths | 14 |
| abstract_inverted_index.global | 5 |
| abstract_inverted_index.images | 128 |
| abstract_inverted_index.labels | 125 |
| abstract_inverted_index.refine | 137 |
| abstract_inverted_index.remain | 2 |
| abstract_inverted_index.robust | 54 |
| abstract_inverted_index.scans. | 60 |
| abstract_inverted_index.serves | 158 |
| abstract_inverted_index.varies | 24 |
| abstract_inverted_index.DeepLab | 51, 77, 168 |
| abstract_inverted_index.GenDeep | 88 |
| abstract_inverted_index.Network | 48 |
| abstract_inverted_index.Weights | 131 |
| abstract_inverted_index.cardiac | 17, 55, 212 |
| abstract_inverted_index.dataset | 73 |
| abstract_inverted_index.disease | 124 |
| abstract_inverted_index.leading | 4 |
| abstract_inverted_index.limited | 31 |
| abstract_inverted_index.loading | 109 |
| abstract_inverted_index.million | 13 |
| abstract_inverted_index.network | 79 |
| abstract_inverted_index.precise | 85 |
| abstract_inverted_index.realism | 139 |
| abstract_inverted_index.results | 198 |
| abstract_inverted_index.spatial | 82 |
| abstract_inverted_index.testing | 172 |
| abstract_inverted_index.through | 134 |
| abstract_inverted_index.trained | 90 |
| abstract_inverted_index.updated | 133 |
| abstract_inverted_index.vectors | 116 |
| abstract_inverted_index.GenDeep, | 39 |
| abstract_inverted_index.However, | 28 |
| abstract_inverted_index.accuracy | 180 |
| abstract_inverted_index.achieves | 178 |
| abstract_inverted_index.cine-MRI | 59 |
| abstract_inverted_index.contexts | 83 |
| abstract_inverted_index.dataset, | 99 |
| abstract_inverted_index.diseases | 1 |
| abstract_inverted_index.exploits | 80 |
| abstract_inverted_index.held-out | 175 |
| abstract_inverted_index.imagery, | 71 |
| abstract_inverted_index.learning | 205 |
| abstract_inverted_index.parallel | 107 |
| abstract_inverted_index.performs | 64 |
| abstract_inverted_index.persist. | 36 |
| abstract_inverted_index.predicts | 123 |
| abstract_inverted_index.produces | 147 |
| abstract_inverted_index.reliable | 211 |
| abstract_inverted_index.trained, | 144 |
| abstract_inverted_index.verified | 191 |
| abstract_inverted_index.Extensive | 170 |
| abstract_inverted_index.Generator | 113, 146 |
| abstract_inverted_index.accuracy. | 142 |
| abstract_inverted_index.annually. | 15 |
| abstract_inverted_index.automated | 209 |
| abstract_inverted_index.component | 63 |
| abstract_inverted_index.effective | 201 |
| abstract_inverted_index.efficient | 106 |
| abstract_inverted_index.exceeding | 186 |
| abstract_inverted_index.framework | 42 |
| abstract_inverted_index.highlight | 199 |
| abstract_inverted_index.introduce | 38 |
| abstract_inverted_index.pathology | 56 |
| abstract_inverted_index.realistic | 69 |
| abstract_inverted_index.resulting | 9 |
| abstract_inverted_index.synthetic | 118 |
| abstract_inverted_index.Generative | 46 |
| abstract_inverted_index.Meanwhile, | 75 |
| abstract_inverted_index.additional | 148 |
| abstract_inverted_index.anatomical | 86 |
| abstract_inverted_index.annotation | 32 |
| abstract_inverted_index.classifier | 162 |
| abstract_inverted_index.classifies | 127 |
| abstract_inverted_index.diagnosis. | 213 |
| abstract_inverted_index.diagnostic | 161 |
| abstract_inverted_index.generative | 204 |
| abstract_inverted_index.leveraging | 100 |
| abstract_inverted_index.morphology | 166 |
| abstract_inverted_index.mortality, | 8 |
| abstract_inverted_index.overcoming | 72 |
| abstract_inverted_index.real/fake. | 130 |
| abstract_inverted_index.subjective | 22 |
| abstract_inverted_index.synthesize | 68 |
| abstract_inverted_index.Adversarial | 47 |
| abstract_inverted_index.benchmarks. | 187 |
| abstract_inverted_index.clinicians. | 27 |
| abstract_inverted_index.comparative | 171 |
| abstract_inverted_index.constraints | 29 |
| abstract_inverted_index.convergence | 189 |
| abstract_inverted_index.integrating | 43 |
| abstract_inverted_index.integration | 202 |
| abstract_inverted_index.inter-slice | 81 |
| abstract_inverted_index.ventricular | 165 |
| abstract_inverted_index.augmentation | 66 |
| abstract_inverted_index.constraints. | 74 |
| abstract_inverted_index.pathological | 70, 149 |
| abstract_inverted_index.segmentation | 78, 207 |
| abstract_inverted_index.unsupervised | 45 |
| abstract_inverted_index.Discriminator | 122, 156 |
| abstract_inverted_index.segmentation. | 169 |
| abstract_inverted_index.significantly | 25, 185 |
| abstract_inverted_index.Cardiovascular | 0 |
| abstract_inverted_index.classification | 57, 141 |
| abstract_inverted_index.generalization | 35 |
| abstract_inverted_index.interpretation | 19 |
| abstract_inverted_index.preprocessing. | 111 |
| abstract_inverted_index.backpropagation | 135 |
| abstract_inverted_index.generalization. | 154 |
| abstract_inverted_index.quantification. | 87 |
| abstract_inverted_index.expert-annotated | 94 |
| cited_by_percentile_year | |
| countries_distinct_count | 3 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.43459778 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |