Automated Classification of Healthy and Infected Grape Leaves Using a Deep Convolutional Neural Network Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.63163/jpehss.v3i3.695
This study proposes a deep learning-based method for the automated identification of grape leaf diseases, focusing on the classification of infected and healthy grape leaves. A Deep Convolutional Neural Network (CNN) model was designed and trained on a curated dataset comprising 1,180 diseased and 1,000 healthy grape leaf images. Data augmentation techniques, including rotation, flipping, scaling, noise injection, gamma correction and principal component analysis (PCA), were employed to improve model generalization and reduce overfitting. The model was trained using optimized hyperparameters such as epoch, batch size, and dropout. Experimental results achieved a classification accuracy of 97.25%, with precision, recall, and F1-score of 95.16%, 100%, and 97.52% for infected leaves, and 100%, 94%, and 96.91% for Healthy leaves, respectively. The proposed model demonstrates reliable performance and can be integrated into precision agriculture systems for early disease detection and crop management.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.63163/jpehss.v3i3.695
- https://journal-of-social-education.org/index.php/Jorunal/article/download/695/750
- OA Status
- diamond
- OpenAlex ID
- https://openalex.org/W4415126568
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415126568Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.63163/jpehss.v3i3.695Digital Object Identifier
- Title
-
Automated Classification of Healthy and Infected Grape Leaves Using a Deep Convolutional Neural NetworkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-30Full publication date if available
- Authors
-
Muhammad Anjum Zia, Muhammad Uzair Khan, Dawar Awan, Muhammad Lais, Saadia Tabassum, Rehanullah Khan, Muhammad Awais KhanList of authors in order
- Landing page
-
https://doi.org/10.63163/jpehss.v3i3.695Publisher landing page
- PDF URL
-
https://journal-of-social-education.org/index.php/Jorunal/article/download/695/750Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://journal-of-social-education.org/index.php/Jorunal/article/download/695/750Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415126568 |
|---|---|
| doi | https://doi.org/10.63163/jpehss.v3i3.695 |
| ids.doi | https://doi.org/10.63163/jpehss.v3i3.695 |
| ids.openalex | https://openalex.org/W4415126568 |
| fwci | 0.0 |
| type | article |
| title | Automated Classification of Healthy and Infected Grape Leaves Using a Deep Convolutional Neural Network |
| biblio.issue | 3 |
| biblio.volume | 3 |
| biblio.last_page | 128 |
| biblio.first_page | 116 |
| topics[0].id | https://openalex.org/T10640 |
| topics[0].field.id | https://openalex.org/fields/16 |
| topics[0].field.display_name | Chemistry |
| topics[0].score | 0.9380999803543091 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1602 |
| topics[0].subfield.display_name | Analytical Chemistry |
| topics[0].display_name | Spectroscopy and Chemometric Analyses |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.63163/jpehss.v3i3.695 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S5407037785 |
| locations[0].source.issn | 2958-5988, 2958-5996 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2958-5988 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Physical Education Health and Social Sciences |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://journal-of-social-education.org/index.php/Jorunal/article/download/695/750 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Physical Education, Health and Social Sciences |
| locations[0].landing_page_url | https://doi.org/10.63163/jpehss.v3i3.695 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5085078795 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Muhammad Anjum Zia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | None Muhammad Zia |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5110657151 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Muhammad Uzair Khan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | None Muhammad Uzair Khan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5037470376 |
| authorships[2].author.orcid | https://orcid.org/0009-0005-8843-259X |
| authorships[2].author.display_name | Dawar Awan |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | None Dawar Awan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5006294073 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Muhammad Lais |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | None Muhammad Lais* |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5071711972 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5428-3603 |
| authorships[4].author.display_name | Saadia Tabassum |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | None Saadia Tabassum |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101513269 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Rehanullah Khan |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | None Rohail Ali Khan |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5102966595 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-0399-3768 |
| authorships[6].author.display_name | Muhammad Awais Khan |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | None Muhammad Awais Khan |
| authorships[6].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://journal-of-social-education.org/index.php/Jorunal/article/download/695/750 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-14T00:00:00 |
| display_name | Automated Classification of Healthy and Infected Grape Leaves Using a Deep Convolutional Neural Network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10640 |
| primary_topic.field.id | https://openalex.org/fields/16 |
| primary_topic.field.display_name | Chemistry |
| primary_topic.score | 0.9380999803543091 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1602 |
| primary_topic.subfield.display_name | Analytical Chemistry |
| primary_topic.display_name | Spectroscopy and Chemometric Analyses |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.63163/jpehss.v3i3.695 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S5407037785 |
| best_oa_location.source.issn | 2958-5988, 2958-5996 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2958-5988 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Physical Education Health and Social Sciences |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://journal-of-social-education.org/index.php/Jorunal/article/download/695/750 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Physical Education, Health and Social Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.63163/jpehss.v3i3.695 |
| primary_location.id | doi:10.63163/jpehss.v3i3.695 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S5407037785 |
| primary_location.source.issn | 2958-5988, 2958-5996 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2958-5988 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Physical Education Health and Social Sciences |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://journal-of-social-education.org/index.php/Jorunal/article/download/695/750 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Physical Education, Health and Social Sciences |
| primary_location.landing_page_url | https://doi.org/10.63163/jpehss.v3i3.695 |
| publication_date | 2025-09-30 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 25 |
| abstract_inverted_index.a | 3, 37, 91 |
| abstract_inverted_index.as | 82 |
| abstract_inverted_index.be | 126 |
| abstract_inverted_index.of | 11, 19, 94, 101 |
| abstract_inverted_index.on | 16, 36 |
| abstract_inverted_index.to | 67 |
| abstract_inverted_index.The | 74, 118 |
| abstract_inverted_index.and | 21, 34, 43, 60, 71, 86, 99, 104, 109, 112, 124, 136 |
| abstract_inverted_index.can | 125 |
| abstract_inverted_index.for | 7, 106, 114, 132 |
| abstract_inverted_index.the | 8, 17 |
| abstract_inverted_index.was | 32, 76 |
| abstract_inverted_index.94%, | 111 |
| abstract_inverted_index.Data | 49 |
| abstract_inverted_index.Deep | 26 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.crop | 137 |
| abstract_inverted_index.deep | 4 |
| abstract_inverted_index.into | 128 |
| abstract_inverted_index.leaf | 13, 47 |
| abstract_inverted_index.such | 81 |
| abstract_inverted_index.were | 65 |
| abstract_inverted_index.with | 96 |
| abstract_inverted_index.(CNN) | 30 |
| abstract_inverted_index.1,000 | 44 |
| abstract_inverted_index.1,180 | 41 |
| abstract_inverted_index.100%, | 103, 110 |
| abstract_inverted_index.batch | 84 |
| abstract_inverted_index.early | 133 |
| abstract_inverted_index.gamma | 58 |
| abstract_inverted_index.grape | 12, 23, 46 |
| abstract_inverted_index.model | 31, 69, 75, 120 |
| abstract_inverted_index.noise | 56 |
| abstract_inverted_index.size, | 85 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.using | 78 |
| abstract_inverted_index.(PCA), | 64 |
| abstract_inverted_index.96.91% | 113 |
| abstract_inverted_index.97.52% | 105 |
| abstract_inverted_index.Neural | 28 |
| abstract_inverted_index.epoch, | 83 |
| abstract_inverted_index.method | 6 |
| abstract_inverted_index.reduce | 72 |
| abstract_inverted_index.95.16%, | 102 |
| abstract_inverted_index.97.25%, | 95 |
| abstract_inverted_index.Healthy | 115 |
| abstract_inverted_index.Network | 29 |
| abstract_inverted_index.curated | 38 |
| abstract_inverted_index.dataset | 39 |
| abstract_inverted_index.disease | 134 |
| abstract_inverted_index.healthy | 22, 45 |
| abstract_inverted_index.images. | 48 |
| abstract_inverted_index.improve | 68 |
| abstract_inverted_index.leaves, | 108, 116 |
| abstract_inverted_index.leaves. | 24 |
| abstract_inverted_index.recall, | 98 |
| abstract_inverted_index.results | 89 |
| abstract_inverted_index.systems | 131 |
| abstract_inverted_index.trained | 35, 77 |
| abstract_inverted_index.F1-score | 100 |
| abstract_inverted_index.accuracy | 93 |
| abstract_inverted_index.achieved | 90 |
| abstract_inverted_index.analysis | 63 |
| abstract_inverted_index.designed | 33 |
| abstract_inverted_index.diseased | 42 |
| abstract_inverted_index.dropout. | 87 |
| abstract_inverted_index.employed | 66 |
| abstract_inverted_index.focusing | 15 |
| abstract_inverted_index.infected | 20, 107 |
| abstract_inverted_index.proposed | 119 |
| abstract_inverted_index.proposes | 2 |
| abstract_inverted_index.reliable | 122 |
| abstract_inverted_index.scaling, | 55 |
| abstract_inverted_index.automated | 9 |
| abstract_inverted_index.component | 62 |
| abstract_inverted_index.detection | 135 |
| abstract_inverted_index.diseases, | 14 |
| abstract_inverted_index.flipping, | 54 |
| abstract_inverted_index.including | 52 |
| abstract_inverted_index.optimized | 79 |
| abstract_inverted_index.precision | 129 |
| abstract_inverted_index.principal | 61 |
| abstract_inverted_index.rotation, | 53 |
| abstract_inverted_index.comprising | 40 |
| abstract_inverted_index.correction | 59 |
| abstract_inverted_index.injection, | 57 |
| abstract_inverted_index.integrated | 127 |
| abstract_inverted_index.precision, | 97 |
| abstract_inverted_index.agriculture | 130 |
| abstract_inverted_index.management. | 138 |
| abstract_inverted_index.performance | 123 |
| abstract_inverted_index.techniques, | 51 |
| abstract_inverted_index.Experimental | 88 |
| abstract_inverted_index.augmentation | 50 |
| abstract_inverted_index.demonstrates | 121 |
| abstract_inverted_index.overfitting. | 73 |
| abstract_inverted_index.Convolutional | 27 |
| abstract_inverted_index.respectively. | 117 |
| abstract_inverted_index.classification | 18, 92 |
| abstract_inverted_index.generalization | 70 |
| abstract_inverted_index.identification | 10 |
| abstract_inverted_index.learning-based | 5 |
| abstract_inverted_index.hyperparameters | 80 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.55232605 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |