Automated classification of polyps using deep learning architectures and few-shot learning Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1186/s12880-023-01007-4
Background Colorectal cancer is a leading cause of cancer-related deaths worldwide. The best method to prevent CRC is a colonoscopy. However, not all colon polyps have the risk of becoming cancerous. Therefore, polyps are classified using different classification systems. After the classification, further treatment and procedures are based on the classification of the polyp. Nevertheless, classification is not easy. Therefore, we suggest two novel automated classifications system assisting gastroenterologists in classifying polyps based on the NICE and Paris classification. Methods We build two classification systems. One is classifying polyps based on their shape (Paris). The other classifies polyps based on their texture and surface patterns (NICE). A two-step process for the Paris classification is introduced: First, detecting and cropping the polyp on the image, and secondly, classifying the polyp based on the cropped area with a transformer network. For the NICE classification, we design a few-shot learning algorithm based on the Deep Metric Learning approach. The algorithm creates an embedding space for polyps, which allows classification from a few examples to account for the data scarcity of NICE annotated images in our database. Results For the Paris classification, we achieve an accuracy of 89.35 %, surpassing all papers in the literature and establishing a new state-of-the-art and baseline accuracy for other publications on a public data set. For the NICE classification, we achieve a competitive accuracy of 81.13 % and demonstrate thereby the viability of the few-shot learning paradigm in polyp classification in data-scarce environments. Additionally, we show different ablations of the algorithms. Finally, we further elaborate on the explainability of the system by showing heat maps of the neural network explaining neural activations. Conclusion Overall we introduce two polyp classification systems to assist gastroenterologists. We achieve state-of-the-art performance in the Paris classification and demonstrate the viability of the few-shot learning paradigm in the NICE classification, addressing the prevalent data scarcity issues faced in medical machine learning.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1186/s12880-023-01007-4
- https://bmcmedimaging.biomedcentral.com/counter/pdf/10.1186/s12880-023-01007-4
- OA Status
- gold
- Cited By
- 51
- References
- 54
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4366593985
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4366593985Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1186/s12880-023-01007-4Digital Object Identifier
- Title
-
Automated classification of polyps using deep learning architectures and few-shot learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-04-20Full publication date if available
- Authors
-
Adrian Krenzer, Stefan Heil, Daniel Fitting, Safa Matti, Wolfram G. Zoller, Alexander Hann, Frank PuppeList of authors in order
- Landing page
-
https://doi.org/10.1186/s12880-023-01007-4Publisher landing page
- PDF URL
-
https://bmcmedimaging.biomedcentral.com/counter/pdf/10.1186/s12880-023-01007-4Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://bmcmedimaging.biomedcentral.com/counter/pdf/10.1186/s12880-023-01007-4Direct OA link when available
- Concepts
-
Artificial intelligence, Computer science, Nice, Contextual image classification, Deep learning, One-class classification, Pattern recognition (psychology), Machine learning, Image (mathematics), Support vector machine, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
51Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 17, 2024: 29, 2023: 5Per-year citation counts (last 5 years)
- References (count)
-
54Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4366593985 |
|---|---|
| doi | https://doi.org/10.1186/s12880-023-01007-4 |
| ids.doi | https://doi.org/10.1186/s12880-023-01007-4 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/37081495 |
| ids.openalex | https://openalex.org/W4366593985 |
| fwci | 12.11744835 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000077321 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Deep Learning |
| mesh[2].qualifier_ui | Q000000981 |
| mesh[2].descriptor_ui | D003111 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | diagnostic imaging |
| mesh[2].descriptor_name | Colonic Polyps |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D003113 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Colonoscopy |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D016571 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Neural Networks, Computer |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000465 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Algorithms |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D006801 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Humans |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D000077321 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Deep Learning |
| mesh[8].qualifier_ui | Q000000981 |
| mesh[8].descriptor_ui | D003111 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | diagnostic imaging |
| mesh[8].descriptor_name | Colonic Polyps |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D003113 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Colonoscopy |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D016571 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Neural Networks, Computer |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D000465 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Algorithms |
| type | article |
| title | Automated classification of polyps using deep learning architectures and few-shot learning |
| biblio.issue | 1 |
| biblio.volume | 23 |
| biblio.last_page | 59 |
| biblio.first_page | 59 |
| topics[0].id | https://openalex.org/T10552 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2730 |
| topics[0].subfield.display_name | Oncology |
| topics[0].display_name | Colorectal Cancer Screening and Detection |
| topics[1].id | https://openalex.org/T12422 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9926000237464905 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[2].id | https://openalex.org/T10862 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9829000234603882 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | AI in cancer detection |
| funders[0].id | https://openalex.org/F4320325356 |
| funders[0].ror | https://ror.org/00fbnyb24 |
| funders[0].display_name | Julius-Maximilians-Universität Würzburg |
| funders[1].id | https://openalex.org/F4320325724 |
| funders[1].ror | |
| funders[1].display_name | Interdisziplinäres Zentrum für Klinische Forschung, Universitätsklinikum Würzburg |
| is_xpac | False |
| apc_list.value | 1690 |
| apc_list.currency | GBP |
| apc_list.value_usd | 2072 |
| apc_paid.value | 2029 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2188 |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.6903691291809082 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.677741527557373 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2779256446 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6469624042510986 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q33959 |
| concepts[2].display_name | Nice |
| concepts[3].id | https://openalex.org/C75294576 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5101385712623596 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5165192 |
| concepts[3].display_name | Contextual image classification |
| concepts[4].id | https://openalex.org/C108583219 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4677239656448364 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep learning |
| concepts[5].id | https://openalex.org/C34872919 |
| concepts[5].level | 3 |
| concepts[5].score | 0.44681575894355774 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7092302 |
| concepts[5].display_name | One-class classification |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.43704575300216675 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.41794297099113464 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C115961682 |
| concepts[8].level | 2 |
| concepts[8].score | 0.29478031396865845 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[8].display_name | Image (mathematics) |
| concepts[9].id | https://openalex.org/C12267149 |
| concepts[9].level | 2 |
| concepts[9].score | 0.2280345857143402 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[9].display_name | Support vector machine |
| concepts[10].id | https://openalex.org/C199360897 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[10].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.6903691291809082 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.677741527557373 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/nice |
| keywords[2].score | 0.6469624042510986 |
| keywords[2].display_name | Nice |
| keywords[3].id | https://openalex.org/keywords/contextual-image-classification |
| keywords[3].score | 0.5101385712623596 |
| keywords[3].display_name | Contextual image classification |
| keywords[4].id | https://openalex.org/keywords/deep-learning |
| keywords[4].score | 0.4677239656448364 |
| keywords[4].display_name | Deep learning |
| keywords[5].id | https://openalex.org/keywords/one-class-classification |
| keywords[5].score | 0.44681575894355774 |
| keywords[5].display_name | One-class classification |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.43704575300216675 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.41794297099113464 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/image |
| keywords[8].score | 0.29478031396865845 |
| keywords[8].display_name | Image (mathematics) |
| keywords[9].id | https://openalex.org/keywords/support-vector-machine |
| keywords[9].score | 0.2280345857143402 |
| keywords[9].display_name | Support vector machine |
| language | en |
| locations[0].id | doi:10.1186/s12880-023-01007-4 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S6505649 |
| locations[0].source.issn | 1471-2342 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1471-2342 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | BMC Medical Imaging |
| locations[0].source.host_organization | https://openalex.org/P4310320256 |
| locations[0].source.host_organization_name | BioMed Central |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320256, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | BioMed Central, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://bmcmedimaging.biomedcentral.com/counter/pdf/10.1186/s12880-023-01007-4 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | BMC Medical Imaging |
| locations[0].landing_page_url | https://doi.org/10.1186/s12880-023-01007-4 |
| locations[1].id | pmid:37081495 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | BMC medical imaging |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/37081495 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10120204 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10120204/pdf/12880_2023_Article_1007.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | BMC Med Imaging |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10120204 |
| locations[3].id | pmh:oai:doaj.org/article:aa67574667b040a08c95c4d9d717135a |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | BMC Medical Imaging, Vol 23, Iss 1, Pp 1-25 (2023) |
| locations[3].landing_page_url | https://doaj.org/article/aa67574667b040a08c95c4d9d717135a |
| locations[4].id | pmh:oai:opus.bibliothek.uni-wuerzburg.de:35746 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306401635 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | Online Publication Service of Würzburg University (Würzburg University) |
| locations[4].source.host_organization | https://openalex.org/I25974101 |
| locations[4].source.host_organization_name | University of Würzburg |
| locations[4].source.host_organization_lineage | https://openalex.org/I25974101 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | doc-type:article |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | |
| locations[4].landing_page_url | https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/35746 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5000283666 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1593-3300 |
| authorships[0].author.display_name | Adrian Krenzer |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I25974101 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Artificial Intelligence and Knowledge Systems, Julius-Maximilians University of Würzburg, Sanderring 2, 97070, Würzburg, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I25974101 |
| authorships[0].institutions[0].ror | https://ror.org/00fbnyb24 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I25974101 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | University of Würzburg |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Adrian Krenzer |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Artificial Intelligence and Knowledge Systems, Julius-Maximilians University of Würzburg, Sanderring 2, 97070, Würzburg, Germany |
| authorships[1].author.id | https://openalex.org/A5064201382 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Stefan Heil |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I25974101 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Artificial Intelligence and Knowledge Systems, Julius-Maximilians University of Würzburg, Sanderring 2, 97070, Würzburg, Germany |
| authorships[1].institutions[0].id | https://openalex.org/I25974101 |
| authorships[1].institutions[0].ror | https://ror.org/00fbnyb24 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I25974101 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | University of Würzburg |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Stefan Heil |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Artificial Intelligence and Knowledge Systems, Julius-Maximilians University of Würzburg, Sanderring 2, 97070, Würzburg, Germany |
| authorships[2].author.id | https://openalex.org/A5026525093 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Daniel Fitting |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210126310 |
| authorships[2].affiliations[0].raw_affiliation_string | Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany |
| authorships[2].institutions[0].id | https://openalex.org/I4210126310 |
| authorships[2].institutions[0].ror | https://ror.org/03pvr2g57 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210126310 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | Universitätsklinikum Würzburg |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Daniel Fitting |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany |
| authorships[3].author.id | https://openalex.org/A5058975814 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Safa Matti |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I25974101 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Artificial Intelligence and Knowledge Systems, Julius-Maximilians University of Würzburg, Sanderring 2, 97070, Würzburg, Germany |
| authorships[3].institutions[0].id | https://openalex.org/I25974101 |
| authorships[3].institutions[0].ror | https://ror.org/00fbnyb24 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I25974101 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | University of Würzburg |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Safa Matti |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Artificial Intelligence and Knowledge Systems, Julius-Maximilians University of Würzburg, Sanderring 2, 97070, Würzburg, Germany |
| authorships[4].author.id | https://openalex.org/A5110470391 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Wolfram G. Zoller |
| authorships[4].countries | DE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210087677 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Internal Medicine and Gastroenterology, Katharinenhospital, Kriegsbergstrasse 60, 70174, Stuttgart, Germany |
| authorships[4].institutions[0].id | https://openalex.org/I4210087677 |
| authorships[4].institutions[0].ror | https://ror.org/002n0by50 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210087677, https://openalex.org/I4210161485 |
| authorships[4].institutions[0].country_code | DE |
| authorships[4].institutions[0].display_name | Katharinenhospital |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wolfram G. Zoller |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Internal Medicine and Gastroenterology, Katharinenhospital, Kriegsbergstrasse 60, 70174, Stuttgart, Germany |
| authorships[5].author.id | https://openalex.org/A5051168420 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8035-3559 |
| authorships[5].author.display_name | Alexander Hann |
| authorships[5].countries | DE |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210126310 |
| authorships[5].affiliations[0].raw_affiliation_string | Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany |
| authorships[5].institutions[0].id | https://openalex.org/I4210126310 |
| authorships[5].institutions[0].ror | https://ror.org/03pvr2g57 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210126310 |
| authorships[5].institutions[0].country_code | DE |
| authorships[5].institutions[0].display_name | Universitätsklinikum Würzburg |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Alexander Hann |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany |
| authorships[6].author.id | https://openalex.org/A5043517672 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-7106-3223 |
| authorships[6].author.display_name | Frank Puppe |
| authorships[6].countries | DE |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I25974101 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Artificial Intelligence and Knowledge Systems, Julius-Maximilians University of Würzburg, Sanderring 2, 97070, Würzburg, Germany |
| authorships[6].institutions[0].id | https://openalex.org/I25974101 |
| authorships[6].institutions[0].ror | https://ror.org/00fbnyb24 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I25974101 |
| authorships[6].institutions[0].country_code | DE |
| authorships[6].institutions[0].display_name | University of Würzburg |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Frank Puppe |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Artificial Intelligence and Knowledge Systems, Julius-Maximilians University of Würzburg, Sanderring 2, 97070, Würzburg, Germany |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://bmcmedimaging.biomedcentral.com/counter/pdf/10.1186/s12880-023-01007-4 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Automated classification of polyps using deep learning architectures and few-shot learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-23T05:10:03.516525 |
| primary_topic.id | https://openalex.org/T10552 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2730 |
| primary_topic.subfield.display_name | Oncology |
| primary_topic.display_name | Colorectal Cancer Screening and Detection |
| related_works | https://openalex.org/W4380075502, https://openalex.org/W2795259429, https://openalex.org/W4281776617, https://openalex.org/W3134918839, https://openalex.org/W4205999209, https://openalex.org/W2326253368, https://openalex.org/W2444525338, https://openalex.org/W2014361528, https://openalex.org/W2188419243, https://openalex.org/W3203388579 |
| cited_by_count | 51 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 17 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 29 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| locations_count | 5 |
| best_oa_location.id | doi:10.1186/s12880-023-01007-4 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S6505649 |
| best_oa_location.source.issn | 1471-2342 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1471-2342 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | BMC Medical Imaging |
| best_oa_location.source.host_organization | https://openalex.org/P4310320256 |
| best_oa_location.source.host_organization_name | BioMed Central |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320256, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | BioMed Central, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://bmcmedimaging.biomedcentral.com/counter/pdf/10.1186/s12880-023-01007-4 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | BMC Medical Imaging |
| best_oa_location.landing_page_url | https://doi.org/10.1186/s12880-023-01007-4 |
| primary_location.id | doi:10.1186/s12880-023-01007-4 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S6505649 |
| primary_location.source.issn | 1471-2342 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1471-2342 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | BMC Medical Imaging |
| primary_location.source.host_organization | https://openalex.org/P4310320256 |
| primary_location.source.host_organization_name | BioMed Central |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320256, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | BioMed Central, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://bmcmedimaging.biomedcentral.com/counter/pdf/10.1186/s12880-023-01007-4 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | BMC Medical Imaging |
| primary_location.landing_page_url | https://doi.org/10.1186/s12880-023-01007-4 |
| publication_date | 2023-04-20 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2889646458, https://openalex.org/W2809100241, https://openalex.org/W2997781171, https://openalex.org/W3008225014, https://openalex.org/W3011484919, https://openalex.org/W2930562923, https://openalex.org/W2256100814, https://openalex.org/W2044297386, https://openalex.org/W2062665794, https://openalex.org/W2588184175, https://openalex.org/W4210830296, https://openalex.org/W2024997246, https://openalex.org/W4248654028, https://openalex.org/W2801958409, https://openalex.org/W2004226965, https://openalex.org/W2069407323, https://openalex.org/W2943735948, https://openalex.org/W2979524736, https://openalex.org/W2584038571, https://openalex.org/W3204166336, https://openalex.org/W2086327306, https://openalex.org/W2508524349, https://openalex.org/W3203505405, https://openalex.org/W2560014990, https://openalex.org/W2765527079, https://openalex.org/W2778113922, https://openalex.org/W3196770907, https://openalex.org/W4293680362, https://openalex.org/W2332757643, https://openalex.org/W3046240927, https://openalex.org/W4281481443, https://openalex.org/W2942907788, https://openalex.org/W6600662924, https://openalex.org/W2946948417, https://openalex.org/W3034942609, https://openalex.org/W1583837637, https://openalex.org/W6735236233, https://openalex.org/W3109684201, https://openalex.org/W2607662938, https://openalex.org/W2963775347, https://openalex.org/W2969985801, https://openalex.org/W2969656782, https://openalex.org/W4239510810, https://openalex.org/W2047643928, https://openalex.org/W2606611007, https://openalex.org/W2074977333, https://openalex.org/W2122538988, https://openalex.org/W2047957729, https://openalex.org/W2603777577, https://openalex.org/W2962858109, https://openalex.org/W3013294478, https://openalex.org/W4317933316, https://openalex.org/W2119252532, https://openalex.org/W3166898278 |
| referenced_works_count | 54 |
| abstract_inverted_index.% | 229 |
| abstract_inverted_index.A | 107 |
| abstract_inverted_index.a | 5, 19, 136, 145, 168, 204, 214, 224 |
| abstract_inverted_index.%, | 195 |
| abstract_inverted_index.We | 81, 286 |
| abstract_inverted_index.an | 159, 191 |
| abstract_inverted_index.by | 264 |
| abstract_inverted_index.in | 70, 181, 199, 240, 243, 290, 303, 314 |
| abstract_inverted_index.is | 4, 18, 57, 87, 114 |
| abstract_inverted_index.of | 8, 29, 52, 177, 193, 227, 235, 251, 261, 268, 298 |
| abstract_inverted_index.on | 49, 74, 91, 100, 122, 131, 150, 213, 258 |
| abstract_inverted_index.to | 15, 171, 283 |
| abstract_inverted_index.we | 61, 143, 189, 222, 247, 255, 277 |
| abstract_inverted_index.CRC | 17 |
| abstract_inverted_index.For | 139, 185, 218 |
| abstract_inverted_index.One | 86 |
| abstract_inverted_index.The | 12, 95, 156 |
| abstract_inverted_index.all | 23, 197 |
| abstract_inverted_index.and | 45, 77, 103, 118, 125, 202, 207, 230, 294 |
| abstract_inverted_index.are | 34, 47 |
| abstract_inverted_index.few | 169 |
| abstract_inverted_index.for | 110, 162, 173, 210 |
| abstract_inverted_index.new | 205 |
| abstract_inverted_index.not | 22, 58 |
| abstract_inverted_index.our | 182 |
| abstract_inverted_index.the | 27, 41, 50, 53, 75, 111, 120, 123, 128, 132, 140, 151, 174, 186, 200, 219, 233, 236, 252, 259, 262, 269, 291, 296, 299, 304, 308 |
| abstract_inverted_index.two | 63, 83, 279 |
| abstract_inverted_index.Deep | 152 |
| abstract_inverted_index.NICE | 76, 141, 178, 220, 305 |
| abstract_inverted_index.area | 134 |
| abstract_inverted_index.best | 13 |
| abstract_inverted_index.data | 175, 216, 310 |
| abstract_inverted_index.from | 167 |
| abstract_inverted_index.have | 26 |
| abstract_inverted_index.heat | 266 |
| abstract_inverted_index.maps | 267 |
| abstract_inverted_index.risk | 28 |
| abstract_inverted_index.set. | 217 |
| abstract_inverted_index.show | 248 |
| abstract_inverted_index.with | 135 |
| abstract_inverted_index.81.13 | 228 |
| abstract_inverted_index.89.35 | 194 |
| abstract_inverted_index.After | 40 |
| abstract_inverted_index.Paris | 78, 112, 187, 292 |
| abstract_inverted_index.based | 48, 73, 90, 99, 130, 149 |
| abstract_inverted_index.build | 82 |
| abstract_inverted_index.cause | 7 |
| abstract_inverted_index.colon | 24 |
| abstract_inverted_index.easy. | 59 |
| abstract_inverted_index.faced | 313 |
| abstract_inverted_index.novel | 64 |
| abstract_inverted_index.other | 96, 211 |
| abstract_inverted_index.polyp | 121, 129, 241, 280 |
| abstract_inverted_index.shape | 93 |
| abstract_inverted_index.space | 161 |
| abstract_inverted_index.their | 92, 101 |
| abstract_inverted_index.using | 36 |
| abstract_inverted_index.which | 164 |
| abstract_inverted_index.First, | 116 |
| abstract_inverted_index.Metric | 153 |
| abstract_inverted_index.allows | 165 |
| abstract_inverted_index.assist | 284 |
| abstract_inverted_index.cancer | 3 |
| abstract_inverted_index.deaths | 10 |
| abstract_inverted_index.design | 144 |
| abstract_inverted_index.image, | 124 |
| abstract_inverted_index.images | 180 |
| abstract_inverted_index.issues | 312 |
| abstract_inverted_index.method | 14 |
| abstract_inverted_index.neural | 270, 273 |
| abstract_inverted_index.papers | 198 |
| abstract_inverted_index.polyp. | 54 |
| abstract_inverted_index.polyps | 25, 33, 72, 89, 98 |
| abstract_inverted_index.public | 215 |
| abstract_inverted_index.system | 67, 263 |
| abstract_inverted_index.(NICE). | 106 |
| abstract_inverted_index.Methods | 80 |
| abstract_inverted_index.Overall | 276 |
| abstract_inverted_index.Results | 184 |
| abstract_inverted_index.account | 172 |
| abstract_inverted_index.achieve | 190, 223, 287 |
| abstract_inverted_index.creates | 158 |
| abstract_inverted_index.cropped | 133 |
| abstract_inverted_index.further | 43, 256 |
| abstract_inverted_index.leading | 6 |
| abstract_inverted_index.machine | 316 |
| abstract_inverted_index.medical | 315 |
| abstract_inverted_index.network | 271 |
| abstract_inverted_index.polyps, | 163 |
| abstract_inverted_index.prevent | 16 |
| abstract_inverted_index.process | 109 |
| abstract_inverted_index.showing | 265 |
| abstract_inverted_index.suggest | 62 |
| abstract_inverted_index.surface | 104 |
| abstract_inverted_index.systems | 282 |
| abstract_inverted_index.texture | 102 |
| abstract_inverted_index.thereby | 232 |
| abstract_inverted_index.(Paris). | 94 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Finally, | 254 |
| abstract_inverted_index.However, | 21 |
| abstract_inverted_index.Learning | 154 |
| abstract_inverted_index.accuracy | 192, 209, 226 |
| abstract_inverted_index.baseline | 208 |
| abstract_inverted_index.becoming | 30 |
| abstract_inverted_index.cropping | 119 |
| abstract_inverted_index.examples | 170 |
| abstract_inverted_index.few-shot | 146, 237, 300 |
| abstract_inverted_index.learning | 147, 238, 301 |
| abstract_inverted_index.network. | 138 |
| abstract_inverted_index.paradigm | 239, 302 |
| abstract_inverted_index.patterns | 105 |
| abstract_inverted_index.scarcity | 176, 311 |
| abstract_inverted_index.systems. | 39, 85 |
| abstract_inverted_index.two-step | 108 |
| abstract_inverted_index.ablations | 250 |
| abstract_inverted_index.algorithm | 148, 157 |
| abstract_inverted_index.annotated | 179 |
| abstract_inverted_index.approach. | 155 |
| abstract_inverted_index.assisting | 68 |
| abstract_inverted_index.automated | 65 |
| abstract_inverted_index.database. | 183 |
| abstract_inverted_index.detecting | 117 |
| abstract_inverted_index.different | 37, 249 |
| abstract_inverted_index.elaborate | 257 |
| abstract_inverted_index.embedding | 160 |
| abstract_inverted_index.introduce | 278 |
| abstract_inverted_index.learning. | 317 |
| abstract_inverted_index.prevalent | 309 |
| abstract_inverted_index.secondly, | 126 |
| abstract_inverted_index.treatment | 44 |
| abstract_inverted_index.viability | 234, 297 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.Colorectal | 2 |
| abstract_inverted_index.Conclusion | 275 |
| abstract_inverted_index.Therefore, | 32, 60 |
| abstract_inverted_index.addressing | 307 |
| abstract_inverted_index.cancerous. | 31 |
| abstract_inverted_index.classified | 35 |
| abstract_inverted_index.classifies | 97 |
| abstract_inverted_index.explaining | 272 |
| abstract_inverted_index.literature | 201 |
| abstract_inverted_index.procedures | 46 |
| abstract_inverted_index.surpassing | 196 |
| abstract_inverted_index.worldwide. | 11 |
| abstract_inverted_index.algorithms. | 253 |
| abstract_inverted_index.classifying | 71, 88, 127 |
| abstract_inverted_index.competitive | 225 |
| abstract_inverted_index.data-scarce | 244 |
| abstract_inverted_index.demonstrate | 231, 295 |
| abstract_inverted_index.introduced: | 115 |
| abstract_inverted_index.performance | 289 |
| abstract_inverted_index.transformer | 137 |
| abstract_inverted_index.activations. | 274 |
| abstract_inverted_index.colonoscopy. | 20 |
| abstract_inverted_index.establishing | 203 |
| abstract_inverted_index.publications | 212 |
| abstract_inverted_index.Additionally, | 246 |
| abstract_inverted_index.Nevertheless, | 55 |
| abstract_inverted_index.environments. | 245 |
| abstract_inverted_index.cancer-related | 9 |
| abstract_inverted_index.classification | 38, 51, 56, 84, 113, 166, 242, 281, 293 |
| abstract_inverted_index.explainability | 260 |
| abstract_inverted_index.classification, | 42, 142, 188, 221, 306 |
| abstract_inverted_index.classification. | 79 |
| abstract_inverted_index.classifications | 66 |
| abstract_inverted_index.state-of-the-art | 206, 288 |
| abstract_inverted_index.gastroenterologists | 69 |
| abstract_inverted_index.gastroenterologists. | 285 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5000283666 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I25974101 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.7599999904632568 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.99044282 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |