Automated Cyber Attack Prediction Workflow Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.56452/7-2-548
Data transmission rates have increased due to the widespread use of technologically driven services and applications.Because networks are always vulnerable to attack, the increasing quantity of network throughput has also increased the security risks, making cybercrime more likely.To combat this, we suggest a cyber security strategy that makes use of GA and neural network structure.Features of DDoS and malware attacks are represented by characteristics, and the GA is used to pick and optimise them.In order to train and classify the retrieved data, it is fed into a neural network.Precision, recall, and f-measure analysis were used to the detection of DDoS and malware nodes to determine the efficacy of the suggested cyber security strategy.Based on the results of the comparison, it was clear that the cyber security method was superior in detecting network threats.The authors then provide a method that blends SI with methods taken from nature.The GA is used to narrow down feature candidates and shrink down data sets.After this, DWT is used in conjunction with ABC to further eliminate superfluous data points.Finally, the training and classification stages employ the ANN-SVM hybrid, with ANN handling the former and SVM handling the latter.The hybrid method's high TPR, detection rate, accuracy, and f-measure with low FPR are the result of a simulation study that included hundreds of simulation rounds.Throughput and PDR are shown by a suggested preventative strategy, which is then tested by altering the number of nodes in comparison to prior efforts.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://doi.org/10.56452/7-2-548
- https://doi.org/10.56452/7-2-548
- OA Status
- bronze
- References
- 16
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4384652006
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4384652006Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.56452/7-2-548Digital Object Identifier
- Title
-
Automated Cyber Attack Prediction WorkflowWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Poonam Verma, Asst ProfessorList of authors in order
- Landing page
-
https://doi.org/10.56452/7-2-548Publisher landing page
- PDF URL
-
https://doi.org/10.56452/7-2-548Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.56452/7-2-548Direct OA link when available
- Concepts
-
Workflow, Computer science, Computer security, DatabaseTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
16Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4384652006 |
|---|---|
| doi | https://doi.org/10.56452/7-2-548 |
| ids.doi | https://doi.org/10.56452/7-2-548 |
| ids.openalex | https://openalex.org/W4384652006 |
| fwci | 0.0 |
| type | article |
| title | Automated Cyber Attack Prediction Workflow |
| biblio.issue | |
| biblio.volume | 8 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10400 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9337000250816345 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Network Security and Intrusion Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C177212765 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7281055450439453 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q627335 |
| concepts[0].display_name | Workflow |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6252928376197815 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C38652104 |
| concepts[2].level | 1 |
| concepts[2].score | 0.37527865171432495 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[2].display_name | Computer security |
| concepts[3].id | https://openalex.org/C77088390 |
| concepts[3].level | 1 |
| concepts[3].score | 0.21358856558799744 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[3].display_name | Database |
| keywords[0].id | https://openalex.org/keywords/workflow |
| keywords[0].score | 0.7281055450439453 |
| keywords[0].display_name | Workflow |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6252928376197815 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/computer-security |
| keywords[2].score | 0.37527865171432495 |
| keywords[2].display_name | Computer security |
| keywords[3].id | https://openalex.org/keywords/database |
| keywords[3].score | 0.21358856558799744 |
| keywords[3].display_name | Database |
| language | en |
| locations[0].id | doi:10.56452/7-2-548 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387282443 |
| locations[0].source.issn | 0974-5823 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0974-5823 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Mechanical Engineering |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://doi.org/10.56452/7-2-548 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Mechanical Engineering |
| locations[0].landing_page_url | http://doi.org/10.56452/7-2-548 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101537058 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3302-6907 |
| authorships[0].author.display_name | Poonam Verma |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I60054993 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computing, Graphic Era Hill University, Dehradun, Uttarakhand India 248002, |
| authorships[0].institutions[0].id | https://openalex.org/I60054993 |
| authorships[0].institutions[0].ror | https://ror.org/03wqgqd89 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I60054993 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Graphic Era University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Poonam Verma |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computing, Graphic Era Hill University, Dehradun, Uttarakhand India 248002, |
| authorships[1].author.id | https://openalex.org/A5112023664 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Asst Professor |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I60054993 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computing, Graphic Era Hill University, Dehradun, Uttarakhand India 248002, |
| authorships[1].institutions[0].id | https://openalex.org/I60054993 |
| authorships[1].institutions[0].ror | https://ror.org/03wqgqd89 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I60054993 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Graphic Era University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Asst Professor |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computing, Graphic Era Hill University, Dehradun, Uttarakhand India 248002, |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.56452/7-2-548 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-07-19T00:00:00 |
| display_name | Automated Cyber Attack Prediction Workflow |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10400 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9337000250816345 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Network Security and Intrusion Detection |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W1981780420, https://openalex.org/W2182707996, https://openalex.org/W45233828, https://openalex.org/W2964988449, https://openalex.org/W188202134, https://openalex.org/W2397952901, https://openalex.org/W2029380707, https://openalex.org/W4255934811, https://openalex.org/W2465382974 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.56452/7-2-548 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387282443 |
| best_oa_location.source.issn | 0974-5823 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0974-5823 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Mechanical Engineering |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://doi.org/10.56452/7-2-548 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Mechanical Engineering |
| best_oa_location.landing_page_url | http://doi.org/10.56452/7-2-548 |
| primary_location.id | doi:10.56452/7-2-548 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387282443 |
| primary_location.source.issn | 0974-5823 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0974-5823 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Mechanical Engineering |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://doi.org/10.56452/7-2-548 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Mechanical Engineering |
| primary_location.landing_page_url | http://doi.org/10.56452/7-2-548 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3042080190, https://openalex.org/W2892859754, https://openalex.org/W2938709233, https://openalex.org/W2996697379, https://openalex.org/W3005752325, https://openalex.org/W2980881799, https://openalex.org/W2915063521, https://openalex.org/W2971727546, https://openalex.org/W3027460652, https://openalex.org/W2980317737, https://openalex.org/W2798894945, https://openalex.org/W2810405816, https://openalex.org/W2907465425, https://openalex.org/W2900188918, https://openalex.org/W2886153789, https://openalex.org/W2912449166 |
| referenced_works_count | 16 |
| abstract_inverted_index.a | 42, 86, 136, 208, 222 |
| abstract_inverted_index.GA | 50, 66, 146 |
| abstract_inverted_index.SI | 140 |
| abstract_inverted_index.by | 62, 221, 230 |
| abstract_inverted_index.in | 129, 163, 236 |
| abstract_inverted_index.is | 67, 83, 147, 161, 227 |
| abstract_inverted_index.it | 82, 119 |
| abstract_inverted_index.of | 10, 25, 49, 55, 98, 107, 116, 207, 214, 234 |
| abstract_inverted_index.on | 113 |
| abstract_inverted_index.to | 6, 20, 69, 75, 95, 103, 149, 167, 238 |
| abstract_inverted_index.we | 40 |
| abstract_inverted_index.ABC | 166 |
| abstract_inverted_index.ANN | 183 |
| abstract_inverted_index.DWT | 160 |
| abstract_inverted_index.FPR | 203 |
| abstract_inverted_index.PDR | 218 |
| abstract_inverted_index.SVM | 188 |
| abstract_inverted_index.and | 14, 51, 57, 64, 71, 77, 90, 100, 154, 175, 187, 199, 217 |
| abstract_inverted_index.are | 17, 60, 204, 219 |
| abstract_inverted_index.due | 5 |
| abstract_inverted_index.fed | 84 |
| abstract_inverted_index.has | 28 |
| abstract_inverted_index.low | 202 |
| abstract_inverted_index.the | 7, 22, 31, 65, 79, 96, 105, 108, 114, 117, 123, 173, 179, 185, 190, 205, 232 |
| abstract_inverted_index.use | 9, 48 |
| abstract_inverted_index.was | 120, 127 |
| abstract_inverted_index.DDoS | 56, 99 |
| abstract_inverted_index.Data | 0 |
| abstract_inverted_index.TPR, | 195 |
| abstract_inverted_index.also | 29 |
| abstract_inverted_index.data | 157, 171 |
| abstract_inverted_index.down | 151, 156 |
| abstract_inverted_index.from | 144 |
| abstract_inverted_index.have | 3 |
| abstract_inverted_index.high | 194 |
| abstract_inverted_index.into | 85 |
| abstract_inverted_index.more | 36 |
| abstract_inverted_index.pick | 70 |
| abstract_inverted_index.that | 46, 122, 138, 211 |
| abstract_inverted_index.then | 134, 228 |
| abstract_inverted_index.used | 68, 94, 148, 162 |
| abstract_inverted_index.were | 93 |
| abstract_inverted_index.with | 141, 165, 182, 201 |
| abstract_inverted_index.clear | 121 |
| abstract_inverted_index.cyber | 43, 110, 124 |
| abstract_inverted_index.data, | 81 |
| abstract_inverted_index.makes | 47 |
| abstract_inverted_index.nodes | 102, 235 |
| abstract_inverted_index.order | 74 |
| abstract_inverted_index.prior | 239 |
| abstract_inverted_index.rate, | 197 |
| abstract_inverted_index.rates | 2 |
| abstract_inverted_index.shown | 220 |
| abstract_inverted_index.study | 210 |
| abstract_inverted_index.taken | 143 |
| abstract_inverted_index.this, | 39, 159 |
| abstract_inverted_index.train | 76 |
| abstract_inverted_index.which | 226 |
| abstract_inverted_index.always | 18 |
| abstract_inverted_index.blends | 139 |
| abstract_inverted_index.combat | 38 |
| abstract_inverted_index.driven | 12 |
| abstract_inverted_index.employ | 178 |
| abstract_inverted_index.former | 186 |
| abstract_inverted_index.hybrid | 192 |
| abstract_inverted_index.making | 34 |
| abstract_inverted_index.method | 126, 137 |
| abstract_inverted_index.narrow | 150 |
| abstract_inverted_index.neural | 52, 87 |
| abstract_inverted_index.number | 233 |
| abstract_inverted_index.result | 206 |
| abstract_inverted_index.risks, | 33 |
| abstract_inverted_index.shrink | 155 |
| abstract_inverted_index.stages | 177 |
| abstract_inverted_index.tested | 229 |
| abstract_inverted_index.ANN-SVM | 180 |
| abstract_inverted_index.attack, | 21 |
| abstract_inverted_index.attacks | 59 |
| abstract_inverted_index.authors | 133 |
| abstract_inverted_index.feature | 152 |
| abstract_inverted_index.further | 168 |
| abstract_inverted_index.hybrid, | 181 |
| abstract_inverted_index.malware | 58, 101 |
| abstract_inverted_index.methods | 142 |
| abstract_inverted_index.network | 26, 53, 131 |
| abstract_inverted_index.provide | 135 |
| abstract_inverted_index.recall, | 89 |
| abstract_inverted_index.results | 115 |
| abstract_inverted_index.suggest | 41 |
| abstract_inverted_index.them.In | 73 |
| abstract_inverted_index.altering | 231 |
| abstract_inverted_index.analysis | 92 |
| abstract_inverted_index.classify | 78 |
| abstract_inverted_index.efficacy | 106 |
| abstract_inverted_index.efforts. | 240 |
| abstract_inverted_index.handling | 184, 189 |
| abstract_inverted_index.hundreds | 213 |
| abstract_inverted_index.included | 212 |
| abstract_inverted_index.method's | 193 |
| abstract_inverted_index.networks | 16 |
| abstract_inverted_index.optimise | 72 |
| abstract_inverted_index.quantity | 24 |
| abstract_inverted_index.security | 32, 44, 111, 125 |
| abstract_inverted_index.services | 13 |
| abstract_inverted_index.strategy | 45 |
| abstract_inverted_index.superior | 128 |
| abstract_inverted_index.training | 174 |
| abstract_inverted_index.accuracy, | 198 |
| abstract_inverted_index.detecting | 130 |
| abstract_inverted_index.detection | 97, 196 |
| abstract_inverted_index.determine | 104 |
| abstract_inverted_index.eliminate | 169 |
| abstract_inverted_index.f-measure | 91, 200 |
| abstract_inverted_index.increased | 4, 30 |
| abstract_inverted_index.likely.To | 37 |
| abstract_inverted_index.retrieved | 80 |
| abstract_inverted_index.strategy, | 225 |
| abstract_inverted_index.suggested | 109, 223 |
| abstract_inverted_index.candidates | 153 |
| abstract_inverted_index.comparison | 237 |
| abstract_inverted_index.cybercrime | 35 |
| abstract_inverted_index.increasing | 23 |
| abstract_inverted_index.latter.The | 191 |
| abstract_inverted_index.nature.The | 145 |
| abstract_inverted_index.sets.After | 158 |
| abstract_inverted_index.simulation | 209, 215 |
| abstract_inverted_index.throughput | 27 |
| abstract_inverted_index.vulnerable | 19 |
| abstract_inverted_index.widespread | 8 |
| abstract_inverted_index.comparison, | 118 |
| abstract_inverted_index.conjunction | 164 |
| abstract_inverted_index.represented | 61 |
| abstract_inverted_index.superfluous | 170 |
| abstract_inverted_index.threats.The | 132 |
| abstract_inverted_index.preventative | 224 |
| abstract_inverted_index.transmission | 1 |
| abstract_inverted_index.classification | 176 |
| abstract_inverted_index.strategy.Based | 112 |
| abstract_inverted_index.points.Finally, | 172 |
| abstract_inverted_index.technologically | 11 |
| abstract_inverted_index.characteristics, | 63 |
| abstract_inverted_index.rounds.Throughput | 216 |
| abstract_inverted_index.network.Precision, | 88 |
| abstract_inverted_index.structure.Features | 54 |
| abstract_inverted_index.applications.Because | 15 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.10547607 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |