Automated Delineation Of Thyroid Nodules In Ultrasound Images Usingspatial Neutrosophic Clustering And Level Set Article Swipe
Deepika Koundal
,
Savita Gupta
,
Sukhwinder Singh
·
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.1041456
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.1041456
An accurate contour estimation plays a significant role in classification and estimation of shape, size, andposition of thyroid nodule. This helps to reduce the number of false positives, improves the accurate detec-tion and efficient diagnosis of thyroid nodules.
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://zenodo.org/record/1041456
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2962843309
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2962843309Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.1041456Digital Object Identifier
- Title
-
Automated Delineation Of Thyroid Nodules In Ultrasound Images Usingspatial Neutrosophic Clustering And Level SetWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-10-15Full publication date if available
- Authors
-
Deepika Koundal, Savita Gupta, Sukhwinder SinghList of authors in order
- Landing page
-
https://zenodo.org/record/1041456Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://zenodo.org/record/1041456Direct OA link when available
- Concepts
-
Thyroid nodules, Ultrasound, Cluster analysis, Thyroid, Medicine, Set (abstract data type), Radiology, Artificial intelligence, Computer science, Computer vision, Pattern recognition (psychology), Internal medicine, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2962843309 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.1041456 |
| ids.doi | https://doi.org/10.5281/zenodo.1041456 |
| ids.mag | 2962843309 |
| ids.openalex | https://openalex.org/W2962843309 |
| fwci | 0.0 |
| type | article |
| title | Automated Delineation Of Thyroid Nodules In Ultrasound Images Usingspatial Neutrosophic Clustering And Level Set |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11438 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9416000247001648 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Retinal Imaging and Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779022025 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7547997832298279 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q53829 |
| concepts[0].display_name | Thyroid nodules |
| concepts[1].id | https://openalex.org/C143753070 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5431157946586609 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q162564 |
| concepts[1].display_name | Ultrasound |
| concepts[2].id | https://openalex.org/C73555534 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5046685934066772 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[2].display_name | Cluster analysis |
| concepts[3].id | https://openalex.org/C526584372 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4868711531162262 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q16399 |
| concepts[3].display_name | Thyroid |
| concepts[4].id | https://openalex.org/C71924100 |
| concepts[4].level | 0 |
| concepts[4].score | 0.46930721402168274 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[4].display_name | Medicine |
| concepts[5].id | https://openalex.org/C177264268 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4544832706451416 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[5].display_name | Set (abstract data type) |
| concepts[6].id | https://openalex.org/C126838900 |
| concepts[6].level | 1 |
| concepts[6].score | 0.42340192198753357 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[6].display_name | Radiology |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3979722261428833 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.37757766246795654 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C31972630 |
| concepts[9].level | 1 |
| concepts[9].score | 0.33018070459365845 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[9].display_name | Computer vision |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.32267898321151733 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C126322002 |
| concepts[11].level | 1 |
| concepts[11].score | 0.17429646849632263 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[11].display_name | Internal medicine |
| concepts[12].id | https://openalex.org/C199360897 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[12].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/thyroid-nodules |
| keywords[0].score | 0.7547997832298279 |
| keywords[0].display_name | Thyroid nodules |
| keywords[1].id | https://openalex.org/keywords/ultrasound |
| keywords[1].score | 0.5431157946586609 |
| keywords[1].display_name | Ultrasound |
| keywords[2].id | https://openalex.org/keywords/cluster-analysis |
| keywords[2].score | 0.5046685934066772 |
| keywords[2].display_name | Cluster analysis |
| keywords[3].id | https://openalex.org/keywords/thyroid |
| keywords[3].score | 0.4868711531162262 |
| keywords[3].display_name | Thyroid |
| keywords[4].id | https://openalex.org/keywords/medicine |
| keywords[4].score | 0.46930721402168274 |
| keywords[4].display_name | Medicine |
| keywords[5].id | https://openalex.org/keywords/set |
| keywords[5].score | 0.4544832706451416 |
| keywords[5].display_name | Set (abstract data type) |
| keywords[6].id | https://openalex.org/keywords/radiology |
| keywords[6].score | 0.42340192198753357 |
| keywords[6].display_name | Radiology |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.3979722261428833 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.37757766246795654 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/computer-vision |
| keywords[9].score | 0.33018070459365845 |
| keywords[9].display_name | Computer vision |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.32267898321151733 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/internal-medicine |
| keywords[11].score | 0.17429646849632263 |
| keywords[11].display_name | Internal medicine |
| language | en |
| locations[0].id | mag:2962843309 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].landing_page_url | https://zenodo.org/record/1041456 |
| locations[1].id | doi:10.5281/zenodo.1041456 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400562 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[1].source.host_organization | https://openalex.org/I67311998 |
| locations[1].source.host_organization_name | European Organization for Nuclear Research |
| locations[1].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.5281/zenodo.1041456 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5009367259 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1688-8772 |
| authorships[0].author.display_name | Deepika Koundal |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Deepika Koundal |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100331763 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5401-2208 |
| authorships[1].author.display_name | Savita Gupta |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Savita Gupta |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101478772 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7863-1740 |
| authorships[2].author.display_name | Sukhwinder Singh |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Sukhwinder Singh |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://zenodo.org/record/1041456 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Automated Delineation Of Thyroid Nodules In Ultrasound Images Usingspatial Neutrosophic Clustering And Level Set |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11438 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9416000247001648 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Retinal Imaging and Analysis |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2351603599, https://openalex.org/W2977910349, https://openalex.org/W4368341548, https://openalex.org/W1998817463, https://openalex.org/W3028972940, https://openalex.org/W2051610497, https://openalex.org/W2186270396, https://openalex.org/W2361996641, https://openalex.org/W2383238614 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | mag:2962843309 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.landing_page_url | https://zenodo.org/record/1041456 |
| primary_location.id | mag:2962843309 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.landing_page_url | https://zenodo.org/record/1041456 |
| publication_date | 2017-10-15 |
| publication_year | 2017 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 5 |
| abstract_inverted_index.An | 0 |
| abstract_inverted_index.in | 8 |
| abstract_inverted_index.of | 12, 16, 25, 35 |
| abstract_inverted_index.to | 21 |
| abstract_inverted_index.and | 10, 32 |
| abstract_inverted_index.the | 23, 29 |
| abstract_inverted_index.This | 19 |
| abstract_inverted_index.role | 7 |
| abstract_inverted_index.false | 26 |
| abstract_inverted_index.helps | 20 |
| abstract_inverted_index.plays | 4 |
| abstract_inverted_index.size, | 14 |
| abstract_inverted_index.number | 24 |
| abstract_inverted_index.reduce | 22 |
| abstract_inverted_index.shape, | 13 |
| abstract_inverted_index.contour | 2 |
| abstract_inverted_index.nodule. | 18 |
| abstract_inverted_index.thyroid | 17, 36 |
| abstract_inverted_index.accurate | 1, 30 |
| abstract_inverted_index.improves | 28 |
| abstract_inverted_index.nodules. | 37 |
| abstract_inverted_index.diagnosis | 34 |
| abstract_inverted_index.efficient | 33 |
| abstract_inverted_index.detec-tion | 31 |
| abstract_inverted_index.estimation | 3, 11 |
| abstract_inverted_index.positives, | 27 |
| abstract_inverted_index.andposition | 15 |
| abstract_inverted_index.significant | 6 |
| abstract_inverted_index.classification | 9 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.33088836 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |