Automated Detection of Canine Babesia Parasite in Blood Smear Images Using Deep Learning and Contrastive Learning Techniques Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/parasitologia5020023
This research introduces a novel method that integrates both unsupervised and supervised learning, leveraging SimCLR (Simple Framework for Contrastive Learning of Visual Representations) for self-supervised learning along with different pre-trained models to improve microscopic image classification of Babesia parasite in canines. We focused on three popular CNN architectures, namely ResNet, EfficientNet, and DenseNet, and evaluated the impact of SimCLR pre-training on their performance. A detailed comparison of the different variants of ResNet, EfficientNet, and Densenet in terms of classification accuracy and training efficiency is presented. Base models such as different variants of the ResNet, EfficientNet, and DenseNet models were utilized within the SimCLR framework. Firstly, the models were pre-trained on unlabeled images, followed by training classifiers on labeled datasets. This approach significantly improved the robustness and accuracy, demonstrating the potential benefits of combining contrastive learning with conventional supervised techniques. The highest accuracy of 97.07% was achieved by Efficientnet_b2. Thus, detection of Babesia or other hemoparasites in microscopic blood smear images could be automated with high accuracy without using a labelled dataset.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/parasitologia5020023
- https://www.mdpi.com/2673-6772/5/2/23/pdf?version=1747228035
- OA Status
- diamond
- References
- 27
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410361175
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410361175Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/parasitologia5020023Digital Object Identifier
- Title
-
Automated Detection of Canine Babesia Parasite in Blood Smear Images Using Deep Learning and Contrastive Learning TechniquesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-14Full publication date if available
- Authors
-
Dilip Kumar Baruah, Kuntala Boruah, Nagendra Nath Barman, Abhijit Deka, Arpita Bharali, Lukumoni BuragohainList of authors in order
- Landing page
-
https://doi.org/10.3390/parasitologia5020023Publisher landing page
- PDF URL
-
https://www.mdpi.com/2673-6772/5/2/23/pdf?version=1747228035Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2673-6772/5/2/23/pdf?version=1747228035Direct OA link when available
- Concepts
-
Blood smear, Parasite hosting, Babesia, Artificial intelligence, Babesiosis, Deep learning, Computer science, Pathology, Medicine, Malaria, World Wide WebTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410361175 |
|---|---|
| doi | https://doi.org/10.3390/parasitologia5020023 |
| ids.doi | https://doi.org/10.3390/parasitologia5020023 |
| ids.openalex | https://openalex.org/W4410361175 |
| fwci | 0.0 |
| type | article |
| title | Automated Detection of Canine Babesia Parasite in Blood Smear Images Using Deep Learning and Contrastive Learning Techniques |
| biblio.issue | 2 |
| biblio.volume | 5 |
| biblio.last_page | 23 |
| biblio.first_page | 23 |
| topics[0].id | https://openalex.org/T12874 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Digital Imaging for Blood Diseases |
| topics[1].id | https://openalex.org/T10862 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9948999881744385 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | AI in cancer detection |
| topics[2].id | https://openalex.org/T11775 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9735000133514404 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | COVID-19 diagnosis using AI |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C3017819844 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6666330695152283 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q886475 |
| concepts[0].display_name | Blood smear |
| concepts[1].id | https://openalex.org/C71928629 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6512322425842285 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q804206 |
| concepts[1].display_name | Parasite hosting |
| concepts[2].id | https://openalex.org/C2780581805 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5805334448814392 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q797656 |
| concepts[2].display_name | Babesia |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5459812879562378 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C2778145968 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4354178309440613 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q797668 |
| concepts[4].display_name | Babesiosis |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4285624623298645 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.41003307700157166 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C142724271 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3619944453239441 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[7].display_name | Pathology |
| concepts[8].id | https://openalex.org/C71924100 |
| concepts[8].level | 0 |
| concepts[8].score | 0.32641565799713135 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[8].display_name | Medicine |
| concepts[9].id | https://openalex.org/C2778048844 |
| concepts[9].level | 2 |
| concepts[9].score | 0.10304969549179077 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12156 |
| concepts[9].display_name | Malaria |
| concepts[10].id | https://openalex.org/C136764020 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[10].display_name | World Wide Web |
| keywords[0].id | https://openalex.org/keywords/blood-smear |
| keywords[0].score | 0.6666330695152283 |
| keywords[0].display_name | Blood smear |
| keywords[1].id | https://openalex.org/keywords/parasite-hosting |
| keywords[1].score | 0.6512322425842285 |
| keywords[1].display_name | Parasite hosting |
| keywords[2].id | https://openalex.org/keywords/babesia |
| keywords[2].score | 0.5805334448814392 |
| keywords[2].display_name | Babesia |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5459812879562378 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/babesiosis |
| keywords[4].score | 0.4354178309440613 |
| keywords[4].display_name | Babesiosis |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.4285624623298645 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.41003307700157166 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/pathology |
| keywords[7].score | 0.3619944453239441 |
| keywords[7].display_name | Pathology |
| keywords[8].id | https://openalex.org/keywords/medicine |
| keywords[8].score | 0.32641565799713135 |
| keywords[8].display_name | Medicine |
| keywords[9].id | https://openalex.org/keywords/malaria |
| keywords[9].score | 0.10304969549179077 |
| keywords[9].display_name | Malaria |
| language | en |
| locations[0].id | doi:10.3390/parasitologia5020023 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210182512 |
| locations[0].source.issn | 2673-6772 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2673-6772 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Parasitologia |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2673-6772/5/2/23/pdf?version=1747228035 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Parasitologia |
| locations[0].landing_page_url | https://doi.org/10.3390/parasitologia5020023 |
| locations[1].id | pmh:oai:doaj.org/article:aca93df1c1594da186646c17d2dadf5a |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Parasitologia, Vol 5, Iss 2, p 23 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/aca93df1c1594da186646c17d2dadf5a |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5004624210 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Dilip Kumar Baruah |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science, Sibsagar University, Sivasagar 785665, Assam, India |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dilip Kumar Baruah |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science, Sibsagar University, Sivasagar 785665, Assam, India |
| authorships[1].author.id | https://openalex.org/A5012647416 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Kuntala Boruah |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science, Sibsagar University, Sivasagar 785665, Assam, India |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kuntala Boruah |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science, Sibsagar University, Sivasagar 785665, Assam, India |
| authorships[2].author.id | https://openalex.org/A5081374920 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9747-3426 |
| authorships[2].author.display_name | Nagendra Nath Barman |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I35839044 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati 781022, Assam, India |
| authorships[2].institutions[0].id | https://openalex.org/I35839044 |
| authorships[2].institutions[0].ror | https://ror.org/05836pk12 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I35839044 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Assam Agricultural University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Nagendra Nath Barman |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati 781022, Assam, India |
| authorships[3].author.id | https://openalex.org/A5036248933 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6529-069X |
| authorships[3].author.display_name | Abhijit Deka |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I35839044 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati 781022, Assam, India |
| authorships[3].institutions[0].id | https://openalex.org/I35839044 |
| authorships[3].institutions[0].ror | https://ror.org/05836pk12 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I35839044 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Assam Agricultural University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Abhijit Deka |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati 781022, Assam, India |
| authorships[4].author.id | https://openalex.org/A5065675408 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4601-1106 |
| authorships[4].author.display_name | Arpita Bharali |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I35839044 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati 781022, Assam, India |
| authorships[4].institutions[0].id | https://openalex.org/I35839044 |
| authorships[4].institutions[0].ror | https://ror.org/05836pk12 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I35839044 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | Assam Agricultural University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Arpita Bharali |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati 781022, Assam, India |
| authorships[5].author.id | https://openalex.org/A5014471217 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7157-3055 |
| authorships[5].author.display_name | Lukumoni Buragohain |
| authorships[5].countries | IN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I35839044 |
| authorships[5].affiliations[0].raw_affiliation_string | Directorate of Research (Veterinary), Assam Agricultural University, Khanapara, Guwahati 781022, Assam, India |
| authorships[5].institutions[0].id | https://openalex.org/I35839044 |
| authorships[5].institutions[0].ror | https://ror.org/05836pk12 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I35839044 |
| authorships[5].institutions[0].country_code | IN |
| authorships[5].institutions[0].display_name | Assam Agricultural University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Lukumoni Buragohain |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Directorate of Research (Veterinary), Assam Agricultural University, Khanapara, Guwahati 781022, Assam, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2673-6772/5/2/23/pdf?version=1747228035 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-05-15T00:00:00 |
| display_name | Automated Detection of Canine Babesia Parasite in Blood Smear Images Using Deep Learning and Contrastive Learning Techniques |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12874 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Digital Imaging for Blood Diseases |
| related_works | https://openalex.org/W2040369217, https://openalex.org/W4255224148, https://openalex.org/W3192731748, https://openalex.org/W4308349932, https://openalex.org/W2062498483, https://openalex.org/W4318952360, https://openalex.org/W3164016420, https://openalex.org/W2972745090, https://openalex.org/W2012518105, https://openalex.org/W3010504506 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/parasitologia5020023 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210182512 |
| best_oa_location.source.issn | 2673-6772 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2673-6772 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Parasitologia |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2673-6772/5/2/23/pdf?version=1747228035 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Parasitologia |
| best_oa_location.landing_page_url | https://doi.org/10.3390/parasitologia5020023 |
| primary_location.id | doi:10.3390/parasitologia5020023 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210182512 |
| primary_location.source.issn | 2673-6772 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2673-6772 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Parasitologia |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2673-6772/5/2/23/pdf?version=1747228035 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Parasitologia |
| primary_location.landing_page_url | https://doi.org/10.3390/parasitologia5020023 |
| publication_date | 2025-05-14 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4387670240, https://openalex.org/W4394857089, https://openalex.org/W2408037840, https://openalex.org/W1980992398, https://openalex.org/W2029145427, https://openalex.org/W1983879622, https://openalex.org/W1929867201, https://openalex.org/W2946901414, https://openalex.org/W2905502540, https://openalex.org/W4383888035, https://openalex.org/W4403693618, https://openalex.org/W4400903160, https://openalex.org/W4315573211, https://openalex.org/W4401644781, https://openalex.org/W3129469040, https://openalex.org/W6856734495, https://openalex.org/W2963172626, https://openalex.org/W4405589258, https://openalex.org/W4400679617, https://openalex.org/W2194775991, https://openalex.org/W2963446712, https://openalex.org/W4403060127, https://openalex.org/W6859496195, https://openalex.org/W4382790162, https://openalex.org/W4399509051, https://openalex.org/W4386999772, https://openalex.org/W4389719396 |
| referenced_works_count | 27 |
| abstract_inverted_index.A | 63 |
| abstract_inverted_index.a | 3, 168 |
| abstract_inverted_index.We | 41 |
| abstract_inverted_index.as | 88 |
| abstract_inverted_index.be | 161 |
| abstract_inverted_index.by | 113, 146 |
| abstract_inverted_index.in | 39, 75, 155 |
| abstract_inverted_index.is | 83 |
| abstract_inverted_index.of | 20, 36, 57, 66, 70, 77, 91, 131, 142, 150 |
| abstract_inverted_index.on | 43, 60, 109, 116 |
| abstract_inverted_index.or | 152 |
| abstract_inverted_index.to | 31 |
| abstract_inverted_index.CNN | 46 |
| abstract_inverted_index.The | 139 |
| abstract_inverted_index.and | 10, 51, 53, 73, 80, 95, 125 |
| abstract_inverted_index.for | 17, 23 |
| abstract_inverted_index.the | 55, 67, 92, 101, 105, 123, 128 |
| abstract_inverted_index.was | 144 |
| abstract_inverted_index.Base | 85 |
| abstract_inverted_index.This | 0, 119 |
| abstract_inverted_index.both | 8 |
| abstract_inverted_index.high | 164 |
| abstract_inverted_index.such | 87 |
| abstract_inverted_index.that | 6 |
| abstract_inverted_index.were | 98, 107 |
| abstract_inverted_index.with | 27, 135, 163 |
| abstract_inverted_index.Thus, | 148 |
| abstract_inverted_index.along | 26 |
| abstract_inverted_index.blood | 157 |
| abstract_inverted_index.could | 160 |
| abstract_inverted_index.image | 34 |
| abstract_inverted_index.novel | 4 |
| abstract_inverted_index.other | 153 |
| abstract_inverted_index.smear | 158 |
| abstract_inverted_index.terms | 76 |
| abstract_inverted_index.their | 61 |
| abstract_inverted_index.three | 44 |
| abstract_inverted_index.using | 167 |
| abstract_inverted_index.97.07% | 143 |
| abstract_inverted_index.SimCLR | 14, 58, 102 |
| abstract_inverted_index.Visual | 21 |
| abstract_inverted_index.images | 159 |
| abstract_inverted_index.impact | 56 |
| abstract_inverted_index.method | 5 |
| abstract_inverted_index.models | 30, 86, 97, 106 |
| abstract_inverted_index.namely | 48 |
| abstract_inverted_index.within | 100 |
| abstract_inverted_index.(Simple | 15 |
| abstract_inverted_index.Babesia | 37, 151 |
| abstract_inverted_index.ResNet, | 49, 71, 93 |
| abstract_inverted_index.focused | 42 |
| abstract_inverted_index.highest | 140 |
| abstract_inverted_index.images, | 111 |
| abstract_inverted_index.improve | 32 |
| abstract_inverted_index.labeled | 117 |
| abstract_inverted_index.popular | 45 |
| abstract_inverted_index.without | 166 |
| abstract_inverted_index.DenseNet | 96 |
| abstract_inverted_index.Densenet | 74 |
| abstract_inverted_index.Firstly, | 104 |
| abstract_inverted_index.Learning | 19 |
| abstract_inverted_index.accuracy | 79, 141, 165 |
| abstract_inverted_index.achieved | 145 |
| abstract_inverted_index.approach | 120 |
| abstract_inverted_index.benefits | 130 |
| abstract_inverted_index.canines. | 40 |
| abstract_inverted_index.dataset. | 170 |
| abstract_inverted_index.detailed | 64 |
| abstract_inverted_index.followed | 112 |
| abstract_inverted_index.improved | 122 |
| abstract_inverted_index.labelled | 169 |
| abstract_inverted_index.learning | 25, 134 |
| abstract_inverted_index.parasite | 38 |
| abstract_inverted_index.research | 1 |
| abstract_inverted_index.training | 81, 114 |
| abstract_inverted_index.utilized | 99 |
| abstract_inverted_index.variants | 69, 90 |
| abstract_inverted_index.DenseNet, | 52 |
| abstract_inverted_index.Framework | 16 |
| abstract_inverted_index.accuracy, | 126 |
| abstract_inverted_index.automated | 162 |
| abstract_inverted_index.combining | 132 |
| abstract_inverted_index.datasets. | 118 |
| abstract_inverted_index.detection | 149 |
| abstract_inverted_index.different | 28, 68, 89 |
| abstract_inverted_index.evaluated | 54 |
| abstract_inverted_index.learning, | 12 |
| abstract_inverted_index.potential | 129 |
| abstract_inverted_index.unlabeled | 110 |
| abstract_inverted_index.comparison | 65 |
| abstract_inverted_index.efficiency | 82 |
| abstract_inverted_index.framework. | 103 |
| abstract_inverted_index.integrates | 7 |
| abstract_inverted_index.introduces | 2 |
| abstract_inverted_index.leveraging | 13 |
| abstract_inverted_index.presented. | 84 |
| abstract_inverted_index.robustness | 124 |
| abstract_inverted_index.supervised | 11, 137 |
| abstract_inverted_index.Contrastive | 18 |
| abstract_inverted_index.classifiers | 115 |
| abstract_inverted_index.contrastive | 133 |
| abstract_inverted_index.microscopic | 33, 156 |
| abstract_inverted_index.pre-trained | 29, 108 |
| abstract_inverted_index.techniques. | 138 |
| abstract_inverted_index.conventional | 136 |
| abstract_inverted_index.performance. | 62 |
| abstract_inverted_index.pre-training | 59 |
| abstract_inverted_index.unsupervised | 9 |
| abstract_inverted_index.EfficientNet, | 50, 72, 94 |
| abstract_inverted_index.demonstrating | 127 |
| abstract_inverted_index.hemoparasites | 154 |
| abstract_inverted_index.significantly | 121 |
| abstract_inverted_index.architectures, | 47 |
| abstract_inverted_index.classification | 35, 78 |
| abstract_inverted_index.self-supervised | 24 |
| abstract_inverted_index.Efficientnet_b2. | 147 |
| abstract_inverted_index.Representations) | 22 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.16437237 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |