Automated dysgraphia detection by deep learning with SensoGrip Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2210.07659
Dysgraphia, a handwriting learning disability, has a serious negative impact on children's academic results, daily life and overall wellbeing. Early detection of dysgraphia allows for an early start of a targeted intervention. Several studies have investigated dysgraphia detection by machine learning algorithms using a digital tablet. However, these studies deployed classical machine learning algorithms with manual feature extraction and selection as well as binary classification: either dysgraphia or no dysgraphia. In this work, we investigated fine grading of handwriting capabilities by predicting SEMS score (between 0 and 12) with deep learning. Our approach provide accuracy more than 99% and root mean square error lower than one, with automatic instead of manual feature extraction and selection. Furthermore, we used smart pen called SensoGrip, a pen equipped with sensors to capture handwriting dynamics, instead of a tablet, enabling writing evaluation in more realistic scenarios.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2210.07659
- https://arxiv.org/pdf/2210.07659
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4306705812
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4306705812Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2210.07659Digital Object Identifier
- Title
-
Automated dysgraphia detection by deep learning with SensoGripWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-10-14Full publication date if available
- Authors
-
Mugdim Bublin, Franz Werner, Andrea Kerschbaumer, Gernot Korak, Sebastian Geyer, Lena Rettinger, Erna SchoenthalerList of authors in order
- Landing page
-
https://arxiv.org/abs/2210.07659Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2210.07659Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2210.07659Direct OA link when available
- Concepts
-
Dysgraphia, Handwriting, Computer science, Artificial intelligence, Feature extraction, Binary classification, Grading (engineering), Machine learning, Deep learning, Overconfidence effect, Writing assessment, Speech recognition, Pattern recognition (psychology), Psychology, Support vector machine, Engineering, Dyslexia, Mathematics education, Law, Political science, Social psychology, Civil engineering, Reading (process)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4306705812 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2210.07659 |
| ids.doi | https://doi.org/10.48550/arxiv.2210.07659 |
| ids.openalex | https://openalex.org/W4306705812 |
| fwci | |
| type | preprint |
| title | Automated dysgraphia detection by deep learning with SensoGrip |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11398 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9668999910354614 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1709 |
| topics[0].subfield.display_name | Human-Computer Interaction |
| topics[0].display_name | Hand Gesture Recognition Systems |
| topics[1].id | https://openalex.org/T12070 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9599000215530396 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3304 |
| topics[1].subfield.display_name | Education |
| topics[1].display_name | Writing and Handwriting Education |
| topics[2].id | https://openalex.org/T12481 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.9527000188827515 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3307 |
| topics[2].subfield.display_name | Human Factors and Ergonomics |
| topics[2].display_name | Digital Accessibility for Disabilities |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2775946201 |
| concepts[0].level | 4 |
| concepts[0].score | 0.9753168821334839 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q584560 |
| concepts[0].display_name | Dysgraphia |
| concepts[1].id | https://openalex.org/C2779386606 |
| concepts[1].level | 2 |
| concepts[1].score | 0.9314701557159424 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2393642 |
| concepts[1].display_name | Handwriting |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6876629590988159 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6253520846366882 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C52622490 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5584309101104736 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[4].display_name | Feature extraction |
| concepts[5].id | https://openalex.org/C66905080 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5181971192359924 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q17005494 |
| concepts[5].display_name | Binary classification |
| concepts[6].id | https://openalex.org/C2777286243 |
| concepts[6].level | 2 |
| concepts[6].score | 0.508553147315979 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5591926 |
| concepts[6].display_name | Grading (engineering) |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5056254863739014 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C108583219 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4490181803703308 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[8].display_name | Deep learning |
| concepts[9].id | https://openalex.org/C51110983 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4264470934867859 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q16503490 |
| concepts[9].display_name | Overconfidence effect |
| concepts[10].id | https://openalex.org/C2777898490 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4104382395744324 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q17157236 |
| concepts[10].display_name | Writing assessment |
| concepts[11].id | https://openalex.org/C28490314 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3437402546405792 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[11].display_name | Speech recognition |
| concepts[12].id | https://openalex.org/C153180895 |
| concepts[12].level | 2 |
| concepts[12].score | 0.34197449684143066 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[12].display_name | Pattern recognition (psychology) |
| concepts[13].id | https://openalex.org/C15744967 |
| concepts[13].level | 0 |
| concepts[13].score | 0.2664545774459839 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[13].display_name | Psychology |
| concepts[14].id | https://openalex.org/C12267149 |
| concepts[14].level | 2 |
| concepts[14].score | 0.1189231276512146 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[14].display_name | Support vector machine |
| concepts[15].id | https://openalex.org/C127413603 |
| concepts[15].level | 0 |
| concepts[15].score | 0.09639409184455872 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[15].display_name | Engineering |
| concepts[16].id | https://openalex.org/C506058694 |
| concepts[16].level | 3 |
| concepts[16].score | 0.08009961247444153 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q132971 |
| concepts[16].display_name | Dyslexia |
| concepts[17].id | https://openalex.org/C145420912 |
| concepts[17].level | 1 |
| concepts[17].score | 0.07644125819206238 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q853077 |
| concepts[17].display_name | Mathematics education |
| concepts[18].id | https://openalex.org/C199539241 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[18].display_name | Law |
| concepts[19].id | https://openalex.org/C17744445 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[19].display_name | Political science |
| concepts[20].id | https://openalex.org/C77805123 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[20].display_name | Social psychology |
| concepts[21].id | https://openalex.org/C147176958 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q77590 |
| concepts[21].display_name | Civil engineering |
| concepts[22].id | https://openalex.org/C554936623 |
| concepts[22].level | 2 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q199657 |
| concepts[22].display_name | Reading (process) |
| keywords[0].id | https://openalex.org/keywords/dysgraphia |
| keywords[0].score | 0.9753168821334839 |
| keywords[0].display_name | Dysgraphia |
| keywords[1].id | https://openalex.org/keywords/handwriting |
| keywords[1].score | 0.9314701557159424 |
| keywords[1].display_name | Handwriting |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6876629590988159 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6253520846366882 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/feature-extraction |
| keywords[4].score | 0.5584309101104736 |
| keywords[4].display_name | Feature extraction |
| keywords[5].id | https://openalex.org/keywords/binary-classification |
| keywords[5].score | 0.5181971192359924 |
| keywords[5].display_name | Binary classification |
| keywords[6].id | https://openalex.org/keywords/grading |
| keywords[6].score | 0.508553147315979 |
| keywords[6].display_name | Grading (engineering) |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.5056254863739014 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/deep-learning |
| keywords[8].score | 0.4490181803703308 |
| keywords[8].display_name | Deep learning |
| keywords[9].id | https://openalex.org/keywords/overconfidence-effect |
| keywords[9].score | 0.4264470934867859 |
| keywords[9].display_name | Overconfidence effect |
| keywords[10].id | https://openalex.org/keywords/writing-assessment |
| keywords[10].score | 0.4104382395744324 |
| keywords[10].display_name | Writing assessment |
| keywords[11].id | https://openalex.org/keywords/speech-recognition |
| keywords[11].score | 0.3437402546405792 |
| keywords[11].display_name | Speech recognition |
| keywords[12].id | https://openalex.org/keywords/pattern-recognition |
| keywords[12].score | 0.34197449684143066 |
| keywords[12].display_name | Pattern recognition (psychology) |
| keywords[13].id | https://openalex.org/keywords/psychology |
| keywords[13].score | 0.2664545774459839 |
| keywords[13].display_name | Psychology |
| keywords[14].id | https://openalex.org/keywords/support-vector-machine |
| keywords[14].score | 0.1189231276512146 |
| keywords[14].display_name | Support vector machine |
| keywords[15].id | https://openalex.org/keywords/engineering |
| keywords[15].score | 0.09639409184455872 |
| keywords[15].display_name | Engineering |
| keywords[16].id | https://openalex.org/keywords/dyslexia |
| keywords[16].score | 0.08009961247444153 |
| keywords[16].display_name | Dyslexia |
| keywords[17].id | https://openalex.org/keywords/mathematics-education |
| keywords[17].score | 0.07644125819206238 |
| keywords[17].display_name | Mathematics education |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2210.07659 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2210.07659 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2210.07659 |
| locations[1].id | doi:10.48550/arxiv.2210.07659 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2210.07659 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5059028945 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Mugdim Bublin |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bublin, Mugdim |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5111613366 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Franz Werner |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Werner, Franz |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5004737572 |
| authorships[2].author.orcid | https://orcid.org/0009-0002-3147-7293 |
| authorships[2].author.display_name | Andrea Kerschbaumer |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kerschbaumer, Andrea |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5054654917 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Gernot Korak |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Korak, Gernot |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5015036439 |
| authorships[4].author.orcid | https://orcid.org/0009-0000-6882-4178 |
| authorships[4].author.display_name | Sebastian Geyer |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Geyer, Sebastian |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5079965538 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Lena Rettinger |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Rettinger, Lena |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5064561102 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Erna Schoenthaler |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Schoenthaler, Erna |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2210.07659 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Automated dysgraphia detection by deep learning with SensoGrip |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11398 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9668999910354614 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1709 |
| primary_topic.subfield.display_name | Human-Computer Interaction |
| primary_topic.display_name | Hand Gesture Recognition Systems |
| related_works | https://openalex.org/W2049013879, https://openalex.org/W96736117, https://openalex.org/W4320801473, https://openalex.org/W4317039755, https://openalex.org/W3085294374, https://openalex.org/W2559216876, https://openalex.org/W2889437371, https://openalex.org/W2760329053, https://openalex.org/W3112395621, https://openalex.org/W2972859123 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2210.07659 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2210.07659 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2210.07659 |
| primary_location.id | pmh:oai:arXiv.org:2210.07659 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2210.07659 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2210.07659 |
| publication_date | 2022-10-14 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.0 | 85 |
| abstract_inverted_index.a | 1, 6, 29, 43, 122, 133 |
| abstract_inverted_index.In | 70 |
| abstract_inverted_index.an | 25 |
| abstract_inverted_index.as | 60, 62 |
| abstract_inverted_index.by | 38, 80 |
| abstract_inverted_index.in | 138 |
| abstract_inverted_index.no | 68 |
| abstract_inverted_index.of | 21, 28, 77, 109, 132 |
| abstract_inverted_index.on | 10 |
| abstract_inverted_index.or | 67 |
| abstract_inverted_index.to | 127 |
| abstract_inverted_index.we | 73, 116 |
| abstract_inverted_index.12) | 87 |
| abstract_inverted_index.99% | 97 |
| abstract_inverted_index.Our | 91 |
| abstract_inverted_index.and | 16, 58, 86, 98, 113 |
| abstract_inverted_index.for | 24 |
| abstract_inverted_index.has | 5 |
| abstract_inverted_index.pen | 119, 123 |
| abstract_inverted_index.SEMS | 82 |
| abstract_inverted_index.deep | 89 |
| abstract_inverted_index.fine | 75 |
| abstract_inverted_index.have | 34 |
| abstract_inverted_index.life | 15 |
| abstract_inverted_index.mean | 100 |
| abstract_inverted_index.more | 95, 139 |
| abstract_inverted_index.one, | 105 |
| abstract_inverted_index.root | 99 |
| abstract_inverted_index.than | 96, 104 |
| abstract_inverted_index.this | 71 |
| abstract_inverted_index.used | 117 |
| abstract_inverted_index.well | 61 |
| abstract_inverted_index.with | 54, 88, 106, 125 |
| abstract_inverted_index.Early | 19 |
| abstract_inverted_index.daily | 14 |
| abstract_inverted_index.early | 26 |
| abstract_inverted_index.error | 102 |
| abstract_inverted_index.lower | 103 |
| abstract_inverted_index.score | 83 |
| abstract_inverted_index.smart | 118 |
| abstract_inverted_index.start | 27 |
| abstract_inverted_index.these | 47 |
| abstract_inverted_index.using | 42 |
| abstract_inverted_index.work, | 72 |
| abstract_inverted_index.allows | 23 |
| abstract_inverted_index.binary | 63 |
| abstract_inverted_index.called | 120 |
| abstract_inverted_index.either | 65 |
| abstract_inverted_index.impact | 9 |
| abstract_inverted_index.manual | 55, 110 |
| abstract_inverted_index.square | 101 |
| abstract_inverted_index.Several | 32 |
| abstract_inverted_index.capture | 128 |
| abstract_inverted_index.digital | 44 |
| abstract_inverted_index.feature | 56, 111 |
| abstract_inverted_index.grading | 76 |
| abstract_inverted_index.instead | 108, 131 |
| abstract_inverted_index.machine | 39, 51 |
| abstract_inverted_index.overall | 17 |
| abstract_inverted_index.provide | 93 |
| abstract_inverted_index.sensors | 126 |
| abstract_inverted_index.serious | 7 |
| abstract_inverted_index.studies | 33, 48 |
| abstract_inverted_index.tablet, | 134 |
| abstract_inverted_index.tablet. | 45 |
| abstract_inverted_index.writing | 136 |
| abstract_inverted_index.(between | 84 |
| abstract_inverted_index.However, | 46 |
| abstract_inverted_index.academic | 12 |
| abstract_inverted_index.accuracy | 94 |
| abstract_inverted_index.approach | 92 |
| abstract_inverted_index.deployed | 49 |
| abstract_inverted_index.enabling | 135 |
| abstract_inverted_index.equipped | 124 |
| abstract_inverted_index.learning | 3, 40, 52 |
| abstract_inverted_index.negative | 8 |
| abstract_inverted_index.results, | 13 |
| abstract_inverted_index.targeted | 30 |
| abstract_inverted_index.automatic | 107 |
| abstract_inverted_index.classical | 50 |
| abstract_inverted_index.detection | 20, 37 |
| abstract_inverted_index.dynamics, | 130 |
| abstract_inverted_index.learning. | 90 |
| abstract_inverted_index.realistic | 140 |
| abstract_inverted_index.selection | 59 |
| abstract_inverted_index.SensoGrip, | 121 |
| abstract_inverted_index.algorithms | 41, 53 |
| abstract_inverted_index.children's | 11 |
| abstract_inverted_index.dysgraphia | 22, 36, 66 |
| abstract_inverted_index.evaluation | 137 |
| abstract_inverted_index.extraction | 57, 112 |
| abstract_inverted_index.predicting | 81 |
| abstract_inverted_index.scenarios. | 141 |
| abstract_inverted_index.selection. | 114 |
| abstract_inverted_index.wellbeing. | 18 |
| abstract_inverted_index.Dysgraphia, | 0 |
| abstract_inverted_index.disability, | 4 |
| abstract_inverted_index.dysgraphia. | 69 |
| abstract_inverted_index.handwriting | 2, 78, 129 |
| abstract_inverted_index.Furthermore, | 115 |
| abstract_inverted_index.capabilities | 79 |
| abstract_inverted_index.investigated | 35, 74 |
| abstract_inverted_index.intervention. | 31 |
| abstract_inverted_index.classification: | 64 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.8999999761581421 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |