Automated Exploratory Clustering to Democratize Clustering Analysis Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/app15126876
AutoML is enabling many practitioners to use sophisticated Machine Learning pipelines even without being experienced in building application-specific solutions. Adapting AutoML to the field of unsupervised learning, particularly to the task of clustering, is challenging, as clustering is highly subjective and application-specific; the goal is not to find the best way to group data objects based on previously seen examples, but to find interesting new structures within potentially unknown data objects that provide actionable insights. The level of interestingness of a clustering is highly subjective and is subject to a variety of different characteristics making different clusterings of the same dataset (e.g., grouping people by age, gender, or special interests). In this paper, we propose an Automated Exploratory Clustering framework which determines multiple clusterings satisfying different notions of interestingness automatically. To this end, we generate multiple clusterings via AutoML processes and return a selection of clusterings, from which the user can explore the most preferred ones. We use different methods like the skyline operator to prune non-Pareto-optimal clusterings wrt. different dimensions of interestingsness and deliver a small set of valuable clusterings. In this way, our approach enables practitioners as well as domain experts to identify valuable clusterings without becoming experts in clustering as well, thus reducing human efforts and resources in finding application-specific solutions. Our empirical investigation with current state-of-the-art methods is carried out on a number of benchmark datasets, where a well-established ground truth can proxy for the wishes of a domain expert and multiple interestingness properties of the clusterings.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/app15126876
- https://www.mdpi.com/2076-3417/15/12/6876/pdf?version=1750328415
- OA Status
- gold
- Cited By
- 1
- References
- 70
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411415479
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411415479Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/app15126876Digital Object Identifier
- Title
-
Automated Exploratory Clustering to Democratize Clustering AnalysisWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-18Full publication date if available
- Authors
-
Georg Stefan Schlake, Max Pernklau, Christian BeecksList of authors in order
- Landing page
-
https://doi.org/10.3390/app15126876Publisher landing page
- PDF URL
-
https://www.mdpi.com/2076-3417/15/12/6876/pdf?version=1750328415Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2076-3417/15/12/6876/pdf?version=1750328415Direct OA link when available
- Concepts
-
Cluster analysis, Computer science, Benchmark (surveying), Machine learning, Field (mathematics), Artificial intelligence, Domain (mathematical analysis), Data mining, Variety (cybernetics), Set (abstract data type), Mathematics, Mathematical analysis, Pure mathematics, Geodesy, Geography, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
70Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411415479 |
|---|---|
| doi | https://doi.org/10.3390/app15126876 |
| ids.doi | https://doi.org/10.3390/app15126876 |
| ids.openalex | https://openalex.org/W4411415479 |
| fwci | 4.81974515 |
| type | article |
| title | Automated Exploratory Clustering to Democratize Clustering Analysis |
| awards[0].id | https://openalex.org/G3200476573 |
| awards[0].funder_id | https://openalex.org/F4320320879 |
| awards[0].display_name | |
| awards[0].funder_award_id | 454630593 |
| awards[0].funder_display_name | Deutsche Forschungsgemeinschaft |
| biblio.issue | 12 |
| biblio.volume | 15 |
| biblio.last_page | 6876 |
| biblio.first_page | 6876 |
| topics[0].id | https://openalex.org/T12535 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9987000226974487 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning and Data Classification |
| topics[1].id | https://openalex.org/T12761 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9980000257492065 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Data Stream Mining Techniques |
| topics[2].id | https://openalex.org/T10637 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9976000189781189 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Advanced Clustering Algorithms Research |
| funders[0].id | https://openalex.org/F4320320879 |
| funders[0].ror | https://ror.org/018mejw64 |
| funders[0].display_name | Deutsche Forschungsgemeinschaft |
| is_xpac | False |
| apc_list.value | 2300 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2490 |
| apc_paid.value | 2300 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2490 |
| concepts[0].id | https://openalex.org/C73555534 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7773500680923462 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[0].display_name | Cluster analysis |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7204825282096863 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C185798385 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5632578134536743 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[2].display_name | Benchmark (surveying) |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.552483081817627 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C9652623 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5118807554244995 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[4].display_name | Field (mathematics) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.499800443649292 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C36503486 |
| concepts[6].level | 2 |
| concepts[6].score | 0.44760388135910034 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[6].display_name | Domain (mathematical analysis) |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.43771904706954956 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C136197465 |
| concepts[8].level | 2 |
| concepts[8].score | 0.43176692724227905 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1729295 |
| concepts[8].display_name | Variety (cybernetics) |
| concepts[9].id | https://openalex.org/C177264268 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4115145206451416 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[9].display_name | Set (abstract data type) |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.09963357448577881 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C134306372 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[11].display_name | Mathematical analysis |
| concepts[12].id | https://openalex.org/C202444582 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[12].display_name | Pure mathematics |
| concepts[13].id | https://openalex.org/C13280743 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[13].display_name | Geodesy |
| concepts[14].id | https://openalex.org/C205649164 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[14].display_name | Geography |
| concepts[15].id | https://openalex.org/C199360897 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[15].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/cluster-analysis |
| keywords[0].score | 0.7773500680923462 |
| keywords[0].display_name | Cluster analysis |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7204825282096863 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/benchmark |
| keywords[2].score | 0.5632578134536743 |
| keywords[2].display_name | Benchmark (surveying) |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.552483081817627 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/field |
| keywords[4].score | 0.5118807554244995 |
| keywords[4].display_name | Field (mathematics) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.499800443649292 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/domain |
| keywords[6].score | 0.44760388135910034 |
| keywords[6].display_name | Domain (mathematical analysis) |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.43771904706954956 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/variety |
| keywords[8].score | 0.43176692724227905 |
| keywords[8].display_name | Variety (cybernetics) |
| keywords[9].id | https://openalex.org/keywords/set |
| keywords[9].score | 0.4115145206451416 |
| keywords[9].display_name | Set (abstract data type) |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.09963357448577881 |
| keywords[10].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.3390/app15126876 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210205812 |
| locations[0].source.issn | 2076-3417 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2076-3417 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Applied Sciences |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2076-3417/15/12/6876/pdf?version=1750328415 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied Sciences |
| locations[0].landing_page_url | https://doi.org/10.3390/app15126876 |
| locations[1].id | pmh:oai:doaj.org/article:12684da0d51c4575a3121f2dfb6cfbe2 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Applied Sciences, Vol 15, Iss 12, p 6876 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/12684da0d51c4575a3121f2dfb6cfbe2 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5078660657 |
| authorships[0].author.orcid | https://orcid.org/0009-0008-5714-1804 |
| authorships[0].author.display_name | Georg Stefan Schlake |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I120691247 |
| authorships[0].affiliations[0].raw_affiliation_string | Chair of Data Science, University of Hagen, 58084 Hagen, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I120691247 |
| authorships[0].institutions[0].ror | https://ror.org/04tkkr536 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I120691247 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | University of Hagen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Georg Stefan Schlake |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Chair of Data Science, University of Hagen, 58084 Hagen, Germany |
| authorships[1].author.id | https://openalex.org/A5099161605 |
| authorships[1].author.orcid | https://orcid.org/0009-0007-5520-4093 |
| authorships[1].author.display_name | Max Pernklau |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I120691247 |
| authorships[1].affiliations[0].raw_affiliation_string | Chair of Data Science, University of Hagen, 58084 Hagen, Germany |
| authorships[1].institutions[0].id | https://openalex.org/I120691247 |
| authorships[1].institutions[0].ror | https://ror.org/04tkkr536 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I120691247 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | University of Hagen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Max Pernklau |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Chair of Data Science, University of Hagen, 58084 Hagen, Germany |
| authorships[2].author.id | https://openalex.org/A5039809923 |
| authorships[2].author.orcid | https://orcid.org/0009-0000-9028-629X |
| authorships[2].author.display_name | Christian Beecks |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I120691247 |
| authorships[2].affiliations[0].raw_affiliation_string | Chair of Data Science, University of Hagen, 58084 Hagen, Germany |
| authorships[2].institutions[0].id | https://openalex.org/I120691247 |
| authorships[2].institutions[0].ror | https://ror.org/04tkkr536 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I120691247 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | University of Hagen |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Christian Beecks |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Chair of Data Science, University of Hagen, 58084 Hagen, Germany |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2076-3417/15/12/6876/pdf?version=1750328415 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Automated Exploratory Clustering to Democratize Clustering Analysis |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12535 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9987000226974487 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning and Data Classification |
| related_works | https://openalex.org/W2378211422, https://openalex.org/W4321353415, https://openalex.org/W2745001401, https://openalex.org/W2130974462, https://openalex.org/W2028665553, https://openalex.org/W2086519370, https://openalex.org/W4246352526, https://openalex.org/W2121910908, https://openalex.org/W915438175, https://openalex.org/W4230315250 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/app15126876 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210205812 |
| best_oa_location.source.issn | 2076-3417 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2076-3417 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Applied Sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2076-3417/15/12/6876/pdf?version=1750328415 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.3390/app15126876 |
| primary_location.id | doi:10.3390/app15126876 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210205812 |
| primary_location.source.issn | 2076-3417 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2076-3417 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Applied Sciences |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2076-3417/15/12/6876/pdf?version=1750328415 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied Sciences |
| primary_location.landing_page_url | https://doi.org/10.3390/app15126876 |
| publication_date | 2025-06-18 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4213308398, https://openalex.org/W4394927283, https://openalex.org/W2102539288, https://openalex.org/W4385270429, https://openalex.org/W2964024268, https://openalex.org/W3036532411, https://openalex.org/W4395686728, https://openalex.org/W4310225030, https://openalex.org/W2127218421, https://openalex.org/W1673310716, https://openalex.org/W2180566385, https://openalex.org/W2067191022, https://openalex.org/W2106505873, https://openalex.org/W3128386428, https://openalex.org/W6795787120, https://openalex.org/W3142497594, https://openalex.org/W4381329178, https://openalex.org/W6865043304, https://openalex.org/W4391093358, https://openalex.org/W4391262438, https://openalex.org/W4406458732, https://openalex.org/W4406495845, https://openalex.org/W2911008619, https://openalex.org/W2016381774, https://openalex.org/W2095897464, https://openalex.org/W4247105055, https://openalex.org/W4411977299, https://openalex.org/W4385568201, https://openalex.org/W4376956857, https://openalex.org/W4385573961, https://openalex.org/W3006913750, https://openalex.org/W4388186900, https://openalex.org/W3188490672, https://openalex.org/W4396495265, https://openalex.org/W2341627671, https://openalex.org/W2762595523, https://openalex.org/W2325261669, https://openalex.org/W6713258757, https://openalex.org/W6753124343, https://openalex.org/W4205905852, https://openalex.org/W4319586503, https://openalex.org/W4319586445, https://openalex.org/W4387730240, https://openalex.org/W3138773240, https://openalex.org/W2149547418, https://openalex.org/W1987971958, https://openalex.org/W2158703410, https://openalex.org/W3049531359, https://openalex.org/W2033403400, https://openalex.org/W6639210954, https://openalex.org/W2408186052, https://openalex.org/W6682642761, https://openalex.org/W6675354045, https://openalex.org/W2601243251, https://openalex.org/W4403723851, https://openalex.org/W4309705183, https://openalex.org/W3171188308, https://openalex.org/W4285742542, https://openalex.org/W2085487226, https://openalex.org/W2051224630, https://openalex.org/W2029064186, https://openalex.org/W1996538584, https://openalex.org/W2003094092, https://openalex.org/W2254387803, https://openalex.org/W3163570135, https://openalex.org/W4395066919, https://openalex.org/W2997591727, https://openalex.org/W2187089797, https://openalex.org/W1859467588, https://openalex.org/W2870589900 |
| referenced_works_count | 70 |
| abstract_inverted_index.a | 80, 89, 142, 175, 225, 231, 241 |
| abstract_inverted_index.In | 110, 181 |
| abstract_inverted_index.To | 130 |
| abstract_inverted_index.We | 156 |
| abstract_inverted_index.an | 115 |
| abstract_inverted_index.as | 35, 188, 190, 202 |
| abstract_inverted_index.by | 104 |
| abstract_inverted_index.in | 15, 200, 210 |
| abstract_inverted_index.is | 1, 33, 37, 44, 82, 86, 221 |
| abstract_inverted_index.of | 24, 31, 77, 79, 91, 97, 127, 144, 171, 178, 227, 240, 248 |
| abstract_inverted_index.on | 56, 224 |
| abstract_inverted_index.or | 107 |
| abstract_inverted_index.to | 5, 21, 28, 46, 51, 61, 88, 164, 193 |
| abstract_inverted_index.we | 113, 133 |
| abstract_inverted_index.Our | 214 |
| abstract_inverted_index.The | 75 |
| abstract_inverted_index.and | 40, 85, 140, 173, 208, 244 |
| abstract_inverted_index.but | 60 |
| abstract_inverted_index.can | 150, 235 |
| abstract_inverted_index.for | 237 |
| abstract_inverted_index.new | 64 |
| abstract_inverted_index.not | 45 |
| abstract_inverted_index.our | 184 |
| abstract_inverted_index.out | 223 |
| abstract_inverted_index.set | 177 |
| abstract_inverted_index.the | 22, 29, 42, 48, 98, 148, 152, 161, 238, 249 |
| abstract_inverted_index.use | 6, 157 |
| abstract_inverted_index.via | 137 |
| abstract_inverted_index.way | 50 |
| abstract_inverted_index.age, | 105 |
| abstract_inverted_index.best | 49 |
| abstract_inverted_index.data | 53, 69 |
| abstract_inverted_index.end, | 132 |
| abstract_inverted_index.even | 11 |
| abstract_inverted_index.find | 47, 62 |
| abstract_inverted_index.from | 146 |
| abstract_inverted_index.goal | 43 |
| abstract_inverted_index.like | 160 |
| abstract_inverted_index.many | 3 |
| abstract_inverted_index.most | 153 |
| abstract_inverted_index.same | 99 |
| abstract_inverted_index.seen | 58 |
| abstract_inverted_index.task | 30 |
| abstract_inverted_index.that | 71 |
| abstract_inverted_index.this | 111, 131, 182 |
| abstract_inverted_index.thus | 204 |
| abstract_inverted_index.user | 149 |
| abstract_inverted_index.way, | 183 |
| abstract_inverted_index.well | 189 |
| abstract_inverted_index.with | 217 |
| abstract_inverted_index.wrt. | 168 |
| abstract_inverted_index.based | 55 |
| abstract_inverted_index.being | 13 |
| abstract_inverted_index.field | 23 |
| abstract_inverted_index.group | 52 |
| abstract_inverted_index.human | 206 |
| abstract_inverted_index.level | 76 |
| abstract_inverted_index.ones. | 155 |
| abstract_inverted_index.proxy | 236 |
| abstract_inverted_index.prune | 165 |
| abstract_inverted_index.small | 176 |
| abstract_inverted_index.truth | 234 |
| abstract_inverted_index.well, | 203 |
| abstract_inverted_index.where | 230 |
| abstract_inverted_index.which | 120, 147 |
| abstract_inverted_index.(e.g., | 101 |
| abstract_inverted_index.AutoML | 0, 20, 138 |
| abstract_inverted_index.domain | 191, 242 |
| abstract_inverted_index.expert | 243 |
| abstract_inverted_index.ground | 233 |
| abstract_inverted_index.highly | 38, 83 |
| abstract_inverted_index.making | 94 |
| abstract_inverted_index.number | 226 |
| abstract_inverted_index.paper, | 112 |
| abstract_inverted_index.people | 103 |
| abstract_inverted_index.return | 141 |
| abstract_inverted_index.wishes | 239 |
| abstract_inverted_index.within | 66 |
| abstract_inverted_index.Machine | 8 |
| abstract_inverted_index.carried | 222 |
| abstract_inverted_index.current | 218 |
| abstract_inverted_index.dataset | 100 |
| abstract_inverted_index.deliver | 174 |
| abstract_inverted_index.efforts | 207 |
| abstract_inverted_index.enables | 186 |
| abstract_inverted_index.experts | 192, 199 |
| abstract_inverted_index.explore | 151 |
| abstract_inverted_index.finding | 211 |
| abstract_inverted_index.gender, | 106 |
| abstract_inverted_index.methods | 159, 220 |
| abstract_inverted_index.notions | 126 |
| abstract_inverted_index.objects | 54, 70 |
| abstract_inverted_index.propose | 114 |
| abstract_inverted_index.provide | 72 |
| abstract_inverted_index.skyline | 162 |
| abstract_inverted_index.special | 108 |
| abstract_inverted_index.subject | 87 |
| abstract_inverted_index.unknown | 68 |
| abstract_inverted_index.variety | 90 |
| abstract_inverted_index.without | 12, 197 |
| abstract_inverted_index.Adapting | 19 |
| abstract_inverted_index.Learning | 9 |
| abstract_inverted_index.approach | 185 |
| abstract_inverted_index.becoming | 198 |
| abstract_inverted_index.building | 16 |
| abstract_inverted_index.enabling | 2 |
| abstract_inverted_index.generate | 134 |
| abstract_inverted_index.grouping | 102 |
| abstract_inverted_index.identify | 194 |
| abstract_inverted_index.multiple | 122, 135, 245 |
| abstract_inverted_index.operator | 163 |
| abstract_inverted_index.reducing | 205 |
| abstract_inverted_index.valuable | 179, 195 |
| abstract_inverted_index.Automated | 116 |
| abstract_inverted_index.benchmark | 228 |
| abstract_inverted_index.datasets, | 229 |
| abstract_inverted_index.different | 92, 95, 125, 158, 169 |
| abstract_inverted_index.empirical | 215 |
| abstract_inverted_index.examples, | 59 |
| abstract_inverted_index.framework | 119 |
| abstract_inverted_index.insights. | 74 |
| abstract_inverted_index.learning, | 26 |
| abstract_inverted_index.pipelines | 10 |
| abstract_inverted_index.preferred | 154 |
| abstract_inverted_index.processes | 139 |
| abstract_inverted_index.resources | 209 |
| abstract_inverted_index.selection | 143 |
| abstract_inverted_index.Clustering | 118 |
| abstract_inverted_index.actionable | 73 |
| abstract_inverted_index.clustering | 36, 81, 201 |
| abstract_inverted_index.determines | 121 |
| abstract_inverted_index.dimensions | 170 |
| abstract_inverted_index.previously | 57 |
| abstract_inverted_index.properties | 247 |
| abstract_inverted_index.satisfying | 124 |
| abstract_inverted_index.solutions. | 18, 213 |
| abstract_inverted_index.structures | 65 |
| abstract_inverted_index.subjective | 39, 84 |
| abstract_inverted_index.Exploratory | 117 |
| abstract_inverted_index.clustering, | 32 |
| abstract_inverted_index.clusterings | 96, 123, 136, 167, 196 |
| abstract_inverted_index.experienced | 14 |
| abstract_inverted_index.interesting | 63 |
| abstract_inverted_index.interests). | 109 |
| abstract_inverted_index.potentially | 67 |
| abstract_inverted_index.challenging, | 34 |
| abstract_inverted_index.clusterings, | 145 |
| abstract_inverted_index.clusterings. | 180, 250 |
| abstract_inverted_index.particularly | 27 |
| abstract_inverted_index.unsupervised | 25 |
| abstract_inverted_index.investigation | 216 |
| abstract_inverted_index.practitioners | 4, 187 |
| abstract_inverted_index.sophisticated | 7 |
| abstract_inverted_index.automatically. | 129 |
| abstract_inverted_index.characteristics | 93 |
| abstract_inverted_index.interestingness | 78, 128, 246 |
| abstract_inverted_index.interestingsness | 172 |
| abstract_inverted_index.state-of-the-art | 219 |
| abstract_inverted_index.well-established | 232 |
| abstract_inverted_index.non-Pareto-optimal | 166 |
| abstract_inverted_index.application-specific | 17, 212 |
| abstract_inverted_index.application-specific; | 41 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5078660657 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I120691247 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/5 |
| sustainable_development_goals[0].score | 0.41999998688697815 |
| sustainable_development_goals[0].display_name | Gender equality |
| citation_normalized_percentile.value | 0.94609485 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |