Automated Image-Based Identification and Consistent Classification of Fire Patterns with Quantitative Shape Analysis and Spatial Location Identification Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2410.23105
Fire patterns, consisting of fire effects that offer insights into fire behavior and origin, are traditionally classified based on investigators' visual observations, leading to subjective interpretations. This study proposes a framework for quantitative fire pattern classification to support fire investigators, aiming for consistency and accuracy. The framework integrates four components. First, it leverages human-computer interaction to extract fire patterns from surfaces, combining investigator expertise with computational analysis. Second, it employs an aspect ratio-based random forest model to classify fire pattern shapes. Third, fire scene point cloud segmentation enables precise identification of fire-affected areas and the mapping of 2D fire patterns to 3D scenes. Lastly, spatial relationships between fire patterns and indoor elements support an interpretation of the fire scene. These components provide a method for fire pattern analysis that synthesizes qualitative and quantitative data. The framework's classification results achieve 93% precision on synthetic data and 83% on real fire patterns.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2410.23105
- https://arxiv.org/pdf/2410.23105
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404343106
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404343106Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2410.23105Digital Object Identifier
- Title
-
Automated Image-Based Identification and Consistent Classification of Fire Patterns with Quantitative Shape Analysis and Spatial Location IdentificationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-30Full publication date if available
- Authors
-
Pengkun Liu, Shaoxiang Ni, Stanislav I. Stoliarov, Pingbo TangList of authors in order
- Landing page
-
https://arxiv.org/abs/2410.23105Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2410.23105Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2410.23105Direct OA link when available
- Concepts
-
Identification (biology), Artificial intelligence, Pattern recognition (psychology), Computer science, Computer vision, Cartography, Geography, Botany, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404343106 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2410.23105 |
| ids.doi | https://doi.org/10.48550/arxiv.2410.23105 |
| ids.openalex | https://openalex.org/W4404343106 |
| fwci | 0.71447363 |
| type | preprint |
| title | Automated Image-Based Identification and Consistent Classification of Fire Patterns with Quantitative Shape Analysis and Spatial Location Identification |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12597 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9603999853134155 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2213 |
| topics[0].subfield.display_name | Safety, Risk, Reliability and Quality |
| topics[0].display_name | Fire Detection and Safety Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C116834253 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8465047478675842 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[0].display_name | Identification (biology) |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5744829177856445 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C153180895 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5568910241127014 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[2].display_name | Pattern recognition (psychology) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4848552942276001 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C31972630 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3700413107872009 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[4].display_name | Computer vision |
| concepts[5].id | https://openalex.org/C58640448 |
| concepts[5].level | 1 |
| concepts[5].score | 0.36254703998565674 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[5].display_name | Cartography |
| concepts[6].id | https://openalex.org/C205649164 |
| concepts[6].level | 0 |
| concepts[6].score | 0.2885136902332306 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[6].display_name | Geography |
| concepts[7].id | https://openalex.org/C59822182 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[7].display_name | Botany |
| concepts[8].id | https://openalex.org/C86803240 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[8].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/identification |
| keywords[0].score | 0.8465047478675842 |
| keywords[0].display_name | Identification (biology) |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.5744829177856445 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/pattern-recognition |
| keywords[2].score | 0.5568910241127014 |
| keywords[2].display_name | Pattern recognition (psychology) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.4848552942276001 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/computer-vision |
| keywords[4].score | 0.3700413107872009 |
| keywords[4].display_name | Computer vision |
| keywords[5].id | https://openalex.org/keywords/cartography |
| keywords[5].score | 0.36254703998565674 |
| keywords[5].display_name | Cartography |
| keywords[6].id | https://openalex.org/keywords/geography |
| keywords[6].score | 0.2885136902332306 |
| keywords[6].display_name | Geography |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2410.23105 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2410.23105 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2410.23105 |
| locations[1].id | doi:10.48550/arxiv.2410.23105 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2410.23105 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5103016178 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0770-0224 |
| authorships[0].author.display_name | Pengkun Liu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Liu, Pengkun |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5108442004 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Shaoxiang Ni |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ni, Shuna |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5114634083 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Stanislav I. Stoliarov |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Stoliarov, Stanislav I. |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5051191181 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4910-1326 |
| authorships[3].author.display_name | Pingbo Tang |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Tang, Pingbo |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2410.23105 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Automated Image-Based Identification and Consistent Classification of Fire Patterns with Quantitative Shape Analysis and Spatial Location Identification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12597 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9603999853134155 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2213 |
| primary_topic.subfield.display_name | Safety, Risk, Reliability and Quality |
| primary_topic.display_name | Fire Detection and Safety Systems |
| related_works | https://openalex.org/W2772917594, https://openalex.org/W2036807459, https://openalex.org/W2058170566, https://openalex.org/W2755342338, https://openalex.org/W2166024367, https://openalex.org/W3116076068, https://openalex.org/W2229312674, https://openalex.org/W2951359407, https://openalex.org/W2079911747, https://openalex.org/W1969923398 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2410.23105 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2410.23105 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2410.23105 |
| primary_location.id | pmh:oai:arXiv.org:2410.23105 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2410.23105 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2410.23105 |
| publication_date | 2024-10-30 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 29, 122 |
| abstract_inverted_index.2D | 97 |
| abstract_inverted_index.3D | 101 |
| abstract_inverted_index.an | 70, 113 |
| abstract_inverted_index.it | 51, 68 |
| abstract_inverted_index.of | 3, 90, 96, 115 |
| abstract_inverted_index.on | 18, 141, 146 |
| abstract_inverted_index.to | 23, 36, 55, 76, 100 |
| abstract_inverted_index.83% | 145 |
| abstract_inverted_index.93% | 139 |
| abstract_inverted_index.The | 45, 134 |
| abstract_inverted_index.and | 12, 43, 93, 109, 131, 144 |
| abstract_inverted_index.are | 14 |
| abstract_inverted_index.for | 31, 41, 124 |
| abstract_inverted_index.the | 94, 116 |
| abstract_inverted_index.Fire | 0 |
| abstract_inverted_index.This | 26 |
| abstract_inverted_index.data | 143 |
| abstract_inverted_index.fire | 4, 10, 33, 38, 57, 78, 82, 98, 107, 117, 125, 148 |
| abstract_inverted_index.four | 48 |
| abstract_inverted_index.from | 59 |
| abstract_inverted_index.into | 9 |
| abstract_inverted_index.real | 147 |
| abstract_inverted_index.that | 6, 128 |
| abstract_inverted_index.with | 64 |
| abstract_inverted_index.These | 119 |
| abstract_inverted_index.areas | 92 |
| abstract_inverted_index.based | 17 |
| abstract_inverted_index.cloud | 85 |
| abstract_inverted_index.data. | 133 |
| abstract_inverted_index.model | 75 |
| abstract_inverted_index.offer | 7 |
| abstract_inverted_index.point | 84 |
| abstract_inverted_index.scene | 83 |
| abstract_inverted_index.study | 27 |
| abstract_inverted_index.First, | 50 |
| abstract_inverted_index.Third, | 81 |
| abstract_inverted_index.aiming | 40 |
| abstract_inverted_index.aspect | 71 |
| abstract_inverted_index.forest | 74 |
| abstract_inverted_index.indoor | 110 |
| abstract_inverted_index.method | 123 |
| abstract_inverted_index.random | 73 |
| abstract_inverted_index.scene. | 118 |
| abstract_inverted_index.visual | 20 |
| abstract_inverted_index.Lastly, | 103 |
| abstract_inverted_index.Second, | 67 |
| abstract_inverted_index.achieve | 138 |
| abstract_inverted_index.between | 106 |
| abstract_inverted_index.effects | 5 |
| abstract_inverted_index.employs | 69 |
| abstract_inverted_index.enables | 87 |
| abstract_inverted_index.extract | 56 |
| abstract_inverted_index.leading | 22 |
| abstract_inverted_index.mapping | 95 |
| abstract_inverted_index.origin, | 13 |
| abstract_inverted_index.pattern | 34, 79, 126 |
| abstract_inverted_index.precise | 88 |
| abstract_inverted_index.provide | 121 |
| abstract_inverted_index.results | 137 |
| abstract_inverted_index.scenes. | 102 |
| abstract_inverted_index.shapes. | 80 |
| abstract_inverted_index.spatial | 104 |
| abstract_inverted_index.support | 37, 112 |
| abstract_inverted_index.analysis | 127 |
| abstract_inverted_index.behavior | 11 |
| abstract_inverted_index.classify | 77 |
| abstract_inverted_index.elements | 111 |
| abstract_inverted_index.insights | 8 |
| abstract_inverted_index.patterns | 58, 99, 108 |
| abstract_inverted_index.proposes | 28 |
| abstract_inverted_index.accuracy. | 44 |
| abstract_inverted_index.analysis. | 66 |
| abstract_inverted_index.combining | 61 |
| abstract_inverted_index.expertise | 63 |
| abstract_inverted_index.framework | 30, 46 |
| abstract_inverted_index.leverages | 52 |
| abstract_inverted_index.patterns, | 1 |
| abstract_inverted_index.patterns. | 149 |
| abstract_inverted_index.precision | 140 |
| abstract_inverted_index.surfaces, | 60 |
| abstract_inverted_index.synthetic | 142 |
| abstract_inverted_index.classified | 16 |
| abstract_inverted_index.components | 120 |
| abstract_inverted_index.consisting | 2 |
| abstract_inverted_index.integrates | 47 |
| abstract_inverted_index.subjective | 24 |
| abstract_inverted_index.components. | 49 |
| abstract_inverted_index.consistency | 42 |
| abstract_inverted_index.framework's | 135 |
| abstract_inverted_index.interaction | 54 |
| abstract_inverted_index.qualitative | 130 |
| abstract_inverted_index.ratio-based | 72 |
| abstract_inverted_index.synthesizes | 129 |
| abstract_inverted_index.investigator | 62 |
| abstract_inverted_index.quantitative | 32, 132 |
| abstract_inverted_index.segmentation | 86 |
| abstract_inverted_index.computational | 65 |
| abstract_inverted_index.fire-affected | 91 |
| abstract_inverted_index.observations, | 21 |
| abstract_inverted_index.relationships | 105 |
| abstract_inverted_index.traditionally | 15 |
| abstract_inverted_index.classification | 35, 136 |
| abstract_inverted_index.human-computer | 53 |
| abstract_inverted_index.identification | 89 |
| abstract_inverted_index.interpretation | 114 |
| abstract_inverted_index.investigators' | 19 |
| abstract_inverted_index.investigators, | 39 |
| abstract_inverted_index.interpretations. | 25 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.6823096 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |