AUTOMATED MARINE OIL SPILL DETECTION USING DEEP LEARNING INSTANCE SEGMENTATION MODEL Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.5194/isprs-archives-xliii-b3-2020-1271-2020
This study developed a novel deep learning oil spill instance segmentation model using Mask-Region-based Convolutional Neural Network (Mask R-CNN) model which is a state-of-the-art computer vision model. A total of 2882 imageries containing oil spill, look-alike, ship, and land area after conducting different pre-processing activities were acquired. These images were subsequently sub-divided into 88% training and 12% for testing, equating to 2530 and 352 images respectively. The model training was conducted using transfer learning on a pre-trained ResNet 101 with COCO data as a backbone in combination with Feature Pyramid Network (FPN) architecture for the extraction of features at 30 epochs with 0.001 learning rate. The model’s performance was evaluated using precision, recall, and F1-measure which shows a higher performance than other existing models with value of 0.964, 0.969 and 0.968 respectively. As a specialized task, the study concluded that the developed deep learning instance segmentation model (Mask R-CNN) performs better than conventional machine learning models and semantic segmentation deep learning models in detection and segmentation of marine oil spill.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5194/isprs-archives-xliii-b3-2020-1271-2020
- https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2020/1271/2020/isprs-archives-XLIII-B3-2020-1271-2020.pdf
- OA Status
- diamond
- Cited By
- 23
- References
- 29
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3080791784
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3080791784Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5194/isprs-archives-xliii-b3-2020-1271-2020Digital Object Identifier
- Title
-
AUTOMATED MARINE OIL SPILL DETECTION USING DEEP LEARNING INSTANCE SEGMENTATION MODELWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-08-21Full publication date if available
- Authors
-
Shamsudeen Temitope Yekeen, Abdul‐Lateef BalogunList of authors in order
- Landing page
-
https://doi.org/10.5194/isprs-archives-xliii-b3-2020-1271-2020Publisher landing page
- PDF URL
-
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2020/1271/2020/isprs-archives-XLIII-B3-2020-1271-2020.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2020/1271/2020/isprs-archives-XLIII-B3-2020-1271-2020.pdfDirect OA link when available
- Concepts
-
Artificial intelligence, Segmentation, Deep learning, Computer science, Convolutional neural network, Pyramid (geometry), Transfer of learning, Pattern recognition (psychology), Feature (linguistics), Task (project management), Object detection, F1 score, Engineering, Mathematics, Geometry, Linguistics, Philosophy, Systems engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
23Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 3, 2023: 3, 2022: 6, 2021: 4Per-year citation counts (last 5 years)
- References (count)
-
29Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3080791784 |
|---|---|
| doi | https://doi.org/10.5194/isprs-archives-xliii-b3-2020-1271-2020 |
| ids.doi | https://doi.org/10.5194/isprs-archives-xliii-b3-2020-1271-2020 |
| ids.mag | 3080791784 |
| ids.openalex | https://openalex.org/W3080791784 |
| fwci | 0.83147001 |
| type | article |
| title | AUTOMATED MARINE OIL SPILL DETECTION USING DEEP LEARNING INSTANCE SEGMENTATION MODEL |
| biblio.issue | |
| biblio.volume | XLIII-B3-2020 |
| biblio.last_page | 1276 |
| biblio.first_page | 1271 |
| topics[0].id | https://openalex.org/T12316 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2310 |
| topics[0].subfield.display_name | Pollution |
| topics[0].display_name | Oil Spill Detection and Mitigation |
| topics[1].id | https://openalex.org/T10122 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9431999921798706 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2307 |
| topics[1].subfield.display_name | Health, Toxicology and Mutagenesis |
| topics[1].display_name | Toxic Organic Pollutants Impact |
| topics[2].id | https://openalex.org/T12597 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9240000247955322 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2213 |
| topics[2].subfield.display_name | Safety, Risk, Reliability and Quality |
| topics[2].display_name | Fire Detection and Safety Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.8027123212814331 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.74985271692276 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C108583219 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7361053824424744 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[2].display_name | Deep learning |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.7222273349761963 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C81363708 |
| concepts[4].level | 2 |
| concepts[4].score | 0.701856791973114 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[4].display_name | Convolutional neural network |
| concepts[5].id | https://openalex.org/C142575187 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6633946895599365 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3358290 |
| concepts[5].display_name | Pyramid (geometry) |
| concepts[6].id | https://openalex.org/C150899416 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5645109415054321 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[6].display_name | Transfer of learning |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5100927948951721 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C2776401178 |
| concepts[8].level | 2 |
| concepts[8].score | 0.48315590620040894 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[8].display_name | Feature (linguistics) |
| concepts[9].id | https://openalex.org/C2780451532 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4701305329799652 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[9].display_name | Task (project management) |
| concepts[10].id | https://openalex.org/C2776151529 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4518839120864868 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[10].display_name | Object detection |
| concepts[11].id | https://openalex.org/C148524875 |
| concepts[11].level | 2 |
| concepts[11].score | 0.43185654282569885 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q6975395 |
| concepts[11].display_name | F1 score |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.10641494393348694 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.10538646578788757 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C2524010 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[14].display_name | Geometry |
| concepts[15].id | https://openalex.org/C41895202 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[15].display_name | Linguistics |
| concepts[16].id | https://openalex.org/C138885662 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[16].display_name | Philosophy |
| concepts[17].id | https://openalex.org/C201995342 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[17].display_name | Systems engineering |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.8027123212814331 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.74985271692276 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/deep-learning |
| keywords[2].score | 0.7361053824424744 |
| keywords[2].display_name | Deep learning |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.7222273349761963 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[4].score | 0.701856791973114 |
| keywords[4].display_name | Convolutional neural network |
| keywords[5].id | https://openalex.org/keywords/pyramid |
| keywords[5].score | 0.6633946895599365 |
| keywords[5].display_name | Pyramid (geometry) |
| keywords[6].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[6].score | 0.5645109415054321 |
| keywords[6].display_name | Transfer of learning |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.5100927948951721 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/feature |
| keywords[8].score | 0.48315590620040894 |
| keywords[8].display_name | Feature (linguistics) |
| keywords[9].id | https://openalex.org/keywords/task |
| keywords[9].score | 0.4701305329799652 |
| keywords[9].display_name | Task (project management) |
| keywords[10].id | https://openalex.org/keywords/object-detection |
| keywords[10].score | 0.4518839120864868 |
| keywords[10].display_name | Object detection |
| keywords[11].id | https://openalex.org/keywords/f1-score |
| keywords[11].score | 0.43185654282569885 |
| keywords[11].display_name | F1 score |
| keywords[12].id | https://openalex.org/keywords/engineering |
| keywords[12].score | 0.10641494393348694 |
| keywords[12].display_name | Engineering |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.10538646578788757 |
| keywords[13].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.5194/isprs-archives-xliii-b3-2020-1271-2020 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2737215817 |
| locations[0].source.issn | 1682-1750, 1682-1777, 2194-9034 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1682-1750 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences |
| locations[0].source.host_organization | https://openalex.org/P4310313756 |
| locations[0].source.host_organization_name | Copernicus Publications |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310313756 |
| locations[0].source.host_organization_lineage_names | Copernicus Publications |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2020/1271/2020/isprs-archives-XLIII-B3-2020-1271-2020.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| locations[0].landing_page_url | https://doi.org/10.5194/isprs-archives-xliii-b3-2020-1271-2020 |
| locations[1].id | pmh:oai:doaj.org/article:c684ff9bdb9045b3a9e5a0faa88184bf |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol XLIII-B3-2020, Pp 1271-1276 (2020) |
| locations[1].landing_page_url | https://doaj.org/article/c684ff9bdb9045b3a9e5a0faa88184bf |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5077652592 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9400-9588 |
| authorships[0].author.display_name | Shamsudeen Temitope Yekeen |
| authorships[0].countries | MY |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I203899302 |
| authorships[0].affiliations[0].raw_affiliation_string | Geospatial Analysis and Modelling (GAM) Research Group, Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS (UTP), 32610 Seri Iskandar, Perak, Malaysia |
| authorships[0].institutions[0].id | https://openalex.org/I203899302 |
| authorships[0].institutions[0].ror | https://ror.org/048g2sh07 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I203899302 |
| authorships[0].institutions[0].country_code | MY |
| authorships[0].institutions[0].display_name | Universiti Teknologi Petronas |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | S. T. Yekeen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Geospatial Analysis and Modelling (GAM) Research Group, Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS (UTP), 32610 Seri Iskandar, Perak, Malaysia |
| authorships[1].author.id | https://openalex.org/A5029465212 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0418-3487 |
| authorships[1].author.display_name | Abdul‐Lateef Balogun |
| authorships[1].countries | MY |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I203899302 |
| authorships[1].affiliations[0].raw_affiliation_string | Geospatial Analysis and Modelling (GAM) Research Group, Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS (UTP), 32610 Seri Iskandar, Perak, Malaysia |
| authorships[1].institutions[0].id | https://openalex.org/I203899302 |
| authorships[1].institutions[0].ror | https://ror.org/048g2sh07 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I203899302 |
| authorships[1].institutions[0].country_code | MY |
| authorships[1].institutions[0].display_name | Universiti Teknologi Petronas |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | A.-L. Balogun |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Geospatial Analysis and Modelling (GAM) Research Group, Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS (UTP), 32610 Seri Iskandar, Perak, Malaysia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2020/1271/2020/isprs-archives-XLIII-B3-2020-1271-2020.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | AUTOMATED MARINE OIL SPILL DETECTION USING DEEP LEARNING INSTANCE SEGMENTATION MODEL |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12316 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2310 |
| primary_topic.subfield.display_name | Pollution |
| primary_topic.display_name | Oil Spill Detection and Mitigation |
| related_works | https://openalex.org/W3183901164, https://openalex.org/W3176438653, https://openalex.org/W3135818718, https://openalex.org/W4290188444, https://openalex.org/W3167935049, https://openalex.org/W3003905048, https://openalex.org/W2253429366, https://openalex.org/W3127975138, https://openalex.org/W2969228573, https://openalex.org/W4200361736 |
| cited_by_count | 23 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 6 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 4 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.5194/isprs-archives-xliii-b3-2020-1271-2020 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2737215817 |
| best_oa_location.source.issn | 1682-1750, 1682-1777, 2194-9034 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1682-1750 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310313756 |
| best_oa_location.source.host_organization_name | Copernicus Publications |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310313756 |
| best_oa_location.source.host_organization_lineage_names | Copernicus Publications |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2020/1271/2020/isprs-archives-XLIII-B3-2020-1271-2020.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.5194/isprs-archives-xliii-b3-2020-1271-2020 |
| primary_location.id | doi:10.5194/isprs-archives-xliii-b3-2020-1271-2020 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2737215817 |
| primary_location.source.issn | 1682-1750, 1682-1777, 2194-9034 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1682-1750 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences |
| primary_location.source.host_organization | https://openalex.org/P4310313756 |
| primary_location.source.host_organization_name | Copernicus Publications |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310313756 |
| primary_location.source.host_organization_lineage_names | Copernicus Publications |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2020/1271/2020/isprs-archives-XLIII-B3-2020-1271-2020.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| primary_location.landing_page_url | https://doi.org/10.5194/isprs-archives-xliii-b3-2020-1271-2020 |
| publication_date | 2020-08-21 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W3015547804, https://openalex.org/W2935798331, https://openalex.org/W6651769479, https://openalex.org/W2949571558, https://openalex.org/W2792332854, https://openalex.org/W2900341665, https://openalex.org/W2965881028, https://openalex.org/W2157817668, https://openalex.org/W1990819856, https://openalex.org/W2589999644, https://openalex.org/W2467523457, https://openalex.org/W2546496017, https://openalex.org/W4254748847, https://openalex.org/W2905397757, https://openalex.org/W2979539276, https://openalex.org/W2209637667, https://openalex.org/W2059033205, https://openalex.org/W2010128473, https://openalex.org/W2078473101, https://openalex.org/W4232137446, https://openalex.org/W2885683523, https://openalex.org/W3012604956, https://openalex.org/W3011243485, https://openalex.org/W2981340875, https://openalex.org/W2782219207, https://openalex.org/W1977503252, https://openalex.org/W2028000463, https://openalex.org/W4230330455, https://openalex.org/W2158878890 |
| referenced_works_count | 29 |
| abstract_inverted_index.A | 28 |
| abstract_inverted_index.a | 4, 23, 76, 84, 118, 134 |
| abstract_inverted_index.30 | 100 |
| abstract_inverted_index.As | 133 |
| abstract_inverted_index.as | 83 |
| abstract_inverted_index.at | 99 |
| abstract_inverted_index.in | 86, 163 |
| abstract_inverted_index.is | 22 |
| abstract_inverted_index.of | 30, 97, 127, 167 |
| abstract_inverted_index.on | 75 |
| abstract_inverted_index.to | 61 |
| abstract_inverted_index.101 | 79 |
| abstract_inverted_index.12% | 57 |
| abstract_inverted_index.352 | 64 |
| abstract_inverted_index.88% | 54 |
| abstract_inverted_index.The | 67, 106 |
| abstract_inverted_index.and | 38, 56, 63, 114, 130, 157, 165 |
| abstract_inverted_index.for | 58, 94 |
| abstract_inverted_index.oil | 8, 34, 169 |
| abstract_inverted_index.the | 95, 137, 141 |
| abstract_inverted_index.was | 70, 109 |
| abstract_inverted_index.2530 | 62 |
| abstract_inverted_index.2882 | 31 |
| abstract_inverted_index.COCO | 81 |
| abstract_inverted_index.This | 1 |
| abstract_inverted_index.area | 40 |
| abstract_inverted_index.data | 82 |
| abstract_inverted_index.deep | 6, 143, 160 |
| abstract_inverted_index.into | 53 |
| abstract_inverted_index.land | 39 |
| abstract_inverted_index.than | 121, 152 |
| abstract_inverted_index.that | 140 |
| abstract_inverted_index.were | 46, 50 |
| abstract_inverted_index.with | 80, 88, 102, 125 |
| abstract_inverted_index.(FPN) | 92 |
| abstract_inverted_index.(Mask | 18, 148 |
| abstract_inverted_index.0.001 | 103 |
| abstract_inverted_index.0.968 | 131 |
| abstract_inverted_index.0.969 | 129 |
| abstract_inverted_index.These | 48 |
| abstract_inverted_index.after | 41 |
| abstract_inverted_index.model | 12, 20, 68, 147 |
| abstract_inverted_index.novel | 5 |
| abstract_inverted_index.other | 122 |
| abstract_inverted_index.rate. | 105 |
| abstract_inverted_index.ship, | 37 |
| abstract_inverted_index.shows | 117 |
| abstract_inverted_index.spill | 9 |
| abstract_inverted_index.study | 2, 138 |
| abstract_inverted_index.task, | 136 |
| abstract_inverted_index.total | 29 |
| abstract_inverted_index.using | 13, 72, 111 |
| abstract_inverted_index.value | 126 |
| abstract_inverted_index.which | 21, 116 |
| abstract_inverted_index.0.964, | 128 |
| abstract_inverted_index.Neural | 16 |
| abstract_inverted_index.R-CNN) | 19, 149 |
| abstract_inverted_index.ResNet | 78 |
| abstract_inverted_index.better | 151 |
| abstract_inverted_index.epochs | 101 |
| abstract_inverted_index.higher | 119 |
| abstract_inverted_index.images | 49, 65 |
| abstract_inverted_index.marine | 168 |
| abstract_inverted_index.model. | 27 |
| abstract_inverted_index.models | 124, 156, 162 |
| abstract_inverted_index.spill, | 35 |
| abstract_inverted_index.spill. | 170 |
| abstract_inverted_index.vision | 26 |
| abstract_inverted_index.Feature | 89 |
| abstract_inverted_index.Network | 17, 91 |
| abstract_inverted_index.Pyramid | 90 |
| abstract_inverted_index.machine | 154 |
| abstract_inverted_index.recall, | 113 |
| abstract_inverted_index.backbone | 85 |
| abstract_inverted_index.computer | 25 |
| abstract_inverted_index.equating | 60 |
| abstract_inverted_index.existing | 123 |
| abstract_inverted_index.features | 98 |
| abstract_inverted_index.instance | 10, 145 |
| abstract_inverted_index.learning | 7, 74, 104, 144, 155, 161 |
| abstract_inverted_index.performs | 150 |
| abstract_inverted_index.semantic | 158 |
| abstract_inverted_index.testing, | 59 |
| abstract_inverted_index.training | 55, 69 |
| abstract_inverted_index.transfer | 73 |
| abstract_inverted_index.Abstract. | 0 |
| abstract_inverted_index.acquired. | 47 |
| abstract_inverted_index.concluded | 139 |
| abstract_inverted_index.conducted | 71 |
| abstract_inverted_index.detection | 164 |
| abstract_inverted_index.developed | 3, 142 |
| abstract_inverted_index.different | 43 |
| abstract_inverted_index.evaluated | 110 |
| abstract_inverted_index.imageries | 32 |
| abstract_inverted_index.model’s | 107 |
| abstract_inverted_index.F1-measure | 115 |
| abstract_inverted_index.activities | 45 |
| abstract_inverted_index.conducting | 42 |
| abstract_inverted_index.containing | 33 |
| abstract_inverted_index.extraction | 96 |
| abstract_inverted_index.precision, | 112 |
| abstract_inverted_index.combination | 87 |
| abstract_inverted_index.look-alike, | 36 |
| abstract_inverted_index.performance | 108, 120 |
| abstract_inverted_index.pre-trained | 77 |
| abstract_inverted_index.specialized | 135 |
| abstract_inverted_index.sub-divided | 52 |
| abstract_inverted_index.architecture | 93 |
| abstract_inverted_index.conventional | 153 |
| abstract_inverted_index.segmentation | 11, 146, 159, 166 |
| abstract_inverted_index.subsequently | 51 |
| abstract_inverted_index.Convolutional | 15 |
| abstract_inverted_index.respectively. | 66, 132 |
| abstract_inverted_index.pre-processing | 44 |
| abstract_inverted_index.state-of-the-art | 24 |
| abstract_inverted_index.Mask-Region-based | 14 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/14 |
| sustainable_development_goals[0].score | 0.8600000143051147 |
| sustainable_development_goals[0].display_name | Life below water |
| citation_normalized_percentile.value | 0.66396954 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |