Automated measurement of macular neovascularization lesion size in nAMD using AI segmentation Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1007/s00417-025-07007-0
Purpose To compare artificial intelligence (AI)-based annotations of hyperreflective material (HRM) and manual demarcation of macular neovascularization (MNV) on optical coherence tomography (OCT) volume scans in neovascular age-related macular degeneration (nAMD), and to assess the suitability of AI-driven OCT segmentation for longitudinal lesion monitoring. Methods In this retrospective study, 42 eyes from 36 patients (21 f, 15 m; mean age baseline 76.6 y) with exudative nAMD were analyzed using longitudinal spectral-domain OCT data. Manual MNV demarcations on en-face OCT projections served as ground truth and were compared to AI-predicted HRM segmentations generated by a 3D nU-Net model on OCT scans. HRM and MNV lesion areas were quantified at multiple time points, and agreement between manual and AI-based measurements was evaluated using Pearson correlation, ordinary least squares regression and robust regression. Results A highly similar mean lesion growth was observed when comparing HRM/MNV lesion sizes in longitudinal measurements. Point-by-point comparison revealed a strong overall correlation (r = 0.78) between AI-predicted and manually annotated HRM areas with increasing significance with longer follow-up. However, two aspects were responsible for some AI measurements being larger than manual measurements: At baseline, AI measurements included hyperreflective subretinal fluid as HRM, which was resorbed after three anti-VEGF injections, and during longer-term follow-up, manually annotated MNV areas were occasionally smaller than those derived from AI-based HRM segmentation due to the manual underestimation of very thin HRM. Conclusions AI-based segmentation of HRM on OCT scans demonstrates strong overall agreement with manual MNV measurements, particularly on longitudinal assessments. Despite some AI-based overestimations occurring at baseline and some manual MNV underestimations during follow-up, measurements between both methods were highly comparable over time.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s00417-025-07007-0
- https://link.springer.com/content/pdf/10.1007/s00417-025-07007-0.pdf
- OA Status
- hybrid
- References
- 27
- OpenAlex ID
- https://openalex.org/W4416271569
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416271569Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s00417-025-07007-0Digital Object Identifier
- Title
-
Automated measurement of macular neovascularization lesion size in nAMD using AI segmentationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-17Full publication date if available
- Authors
-
Anna Vahldiek, Lukas Heine, Benja Vahldiek, Jens Schröter, J. Wolf, Laurenz PauleikhoffList of authors in order
- Landing page
-
https://doi.org/10.1007/s00417-025-07007-0Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s00417-025-07007-0.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s00417-025-07007-0.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
27Number of works referenced by this work
Full payload
| id | https://openalex.org/W4416271569 |
|---|---|
| doi | https://doi.org/10.1007/s00417-025-07007-0 |
| ids.doi | https://doi.org/10.1007/s00417-025-07007-0 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/41247474 |
| ids.openalex | https://openalex.org/W4416271569 |
| fwci | |
| type | article |
| title | Automated measurement of macular neovascularization lesion size in nAMD using AI segmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list.value | 3390 |
| apc_list.currency | EUR |
| apc_list.value_usd | 4390 |
| apc_paid.value | 3390 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 4390 |
| language | en |
| locations[0].id | doi:10.1007/s00417-025-07007-0 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S93410275 |
| locations[0].source.issn | 0721-832X, 1435-702X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0721-832X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Graefe s Archive for Clinical and Experimental Ophthalmology |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s00417-025-07007-0.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Graefe's Archive for Clinical and Experimental Ophthalmology |
| locations[0].landing_page_url | https://doi.org/10.1007/s00417-025-07007-0 |
| locations[1].id | pmid:41247474 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/41247474 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5119007152 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Anna Vahldiek |
| authorships[0].affiliations[0].raw_affiliation_string | Institute for AI in Medicine, University Medicine Essen, Essen, North-Rhine Westfalia, Germany |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Anna Vahldiek |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Institute for AI in Medicine, University Medicine Essen, Essen, North-Rhine Westfalia, Germany |
| authorships[1].author.id | https://openalex.org/A5092355592 |
| authorships[1].author.orcid | https://orcid.org/0009-0004-3405-0556 |
| authorships[1].author.display_name | Lukas Heine |
| authorships[1].affiliations[0].raw_affiliation_string | Institute for AI in Medicine, University Medicine Essen, Essen, North-Rhine Westfalia, Germany |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lukas Heine |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute for AI in Medicine, University Medicine Essen, Essen, North-Rhine Westfalia, Germany |
| authorships[2].author.id | https://openalex.org/A5119007153 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Benja Vahldiek |
| authorships[2].affiliations[0].raw_affiliation_string | Institute for AI in Medicine, University Medicine Essen, Essen, North-Rhine Westfalia, Germany |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Benja Vahldiek |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Institute for AI in Medicine, University Medicine Essen, Essen, North-Rhine Westfalia, Germany |
| authorships[3].author.id | https://openalex.org/A5071116655 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9240-5798 |
| authorships[3].author.display_name | Jens Schröter |
| authorships[3].affiliations[0].raw_affiliation_string | Institute for AI in Medicine, University Medicine Essen, Essen, North-Rhine Westfalia, Germany |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jasper Schröter |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Institute for AI in Medicine, University Medicine Essen, Essen, North-Rhine Westfalia, Germany |
| authorships[4].author.id | https://openalex.org/A5004691037 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0549-3831 |
| authorships[4].author.display_name | J. Wolf |
| authorships[4].affiliations[0].raw_affiliation_string | Institute for AI in Medicine, University Medicine Essen, Essen, North-Rhine Westfalia, Germany |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jan-Niklas Wolf |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Institute for AI in Medicine, University Medicine Essen, Essen, North-Rhine Westfalia, Germany |
| authorships[5].author.id | https://openalex.org/A5089856692 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7671-8391 |
| authorships[5].author.display_name | Laurenz Pauleikhoff |
| authorships[5].countries | DE |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I159176309, https://openalex.org/I4210108711 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Ophthalmology, University Hospital Hamburg-Eppendorf, Hamburg, Germany |
| authorships[5].institutions[0].id | https://openalex.org/I4210108711 |
| authorships[5].institutions[0].ror | https://ror.org/01zgy1s35 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I159176309, https://openalex.org/I4210108711 |
| authorships[5].institutions[0].country_code | DE |
| authorships[5].institutions[0].display_name | University Medical Center Hamburg-Eppendorf |
| authorships[5].institutions[1].id | https://openalex.org/I159176309 |
| authorships[5].institutions[1].ror | https://ror.org/00g30e956 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I159176309 |
| authorships[5].institutions[1].country_code | DE |
| authorships[5].institutions[1].display_name | Universität Hamburg |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Laurenz Pauleikhoff |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Ophthalmology, University Hospital Hamburg-Eppendorf, Hamburg, Germany |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s00417-025-07007-0.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-17T00:00:00 |
| display_name | Automated measurement of macular neovascularization lesion size in nAMD using AI segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T09:51:58.749447 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1007/s00417-025-07007-0 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S93410275 |
| best_oa_location.source.issn | 0721-832X, 1435-702X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0721-832X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Graefe s Archive for Clinical and Experimental Ophthalmology |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s00417-025-07007-0.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Graefe's Archive for Clinical and Experimental Ophthalmology |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s00417-025-07007-0 |
| primary_location.id | doi:10.1007/s00417-025-07007-0 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S93410275 |
| primary_location.source.issn | 0721-832X, 1435-702X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0721-832X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Graefe s Archive for Clinical and Experimental Ophthalmology |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s00417-025-07007-0.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Graefe's Archive for Clinical and Experimental Ophthalmology |
| primary_location.landing_page_url | https://doi.org/10.1007/s00417-025-07007-0 |
| publication_date | 2025-11-17 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W1493672163, https://openalex.org/W2160226180, https://openalex.org/W3123701742, https://openalex.org/W4390399847, https://openalex.org/W2138903426, https://openalex.org/W4390100558, https://openalex.org/W2766820003, https://openalex.org/W2329521208, https://openalex.org/W1976041506, https://openalex.org/W4396702041, https://openalex.org/W2125587232, https://openalex.org/W4383371978, https://openalex.org/W4382795308, https://openalex.org/W4283739154, https://openalex.org/W2592729436, https://openalex.org/W4410931356, https://openalex.org/W4365483408, https://openalex.org/W3089097858, https://openalex.org/W4412477539, https://openalex.org/W2998816027, https://openalex.org/W4321483677, https://openalex.org/W4311280184, https://openalex.org/W2146673937, https://openalex.org/W3014974815, https://openalex.org/W2988969159, https://openalex.org/W2029010710, https://openalex.org/W4405682535 |
| referenced_works_count | 27 |
| abstract_inverted_index.= | 156 |
| abstract_inverted_index.A | 132 |
| abstract_inverted_index.a | 94, 151 |
| abstract_inverted_index.(r | 155 |
| abstract_inverted_index.15 | 57 |
| abstract_inverted_index.36 | 53 |
| abstract_inverted_index.3D | 95 |
| abstract_inverted_index.42 | 50 |
| abstract_inverted_index.AI | 178, 187 |
| abstract_inverted_index.At | 185 |
| abstract_inverted_index.In | 46 |
| abstract_inverted_index.To | 2 |
| abstract_inverted_index.as | 82, 193 |
| abstract_inverted_index.at | 108, 254 |
| abstract_inverted_index.by | 93 |
| abstract_inverted_index.f, | 56 |
| abstract_inverted_index.in | 26, 145 |
| abstract_inverted_index.m; | 58 |
| abstract_inverted_index.of | 8, 15, 37, 225, 232 |
| abstract_inverted_index.on | 19, 77, 98, 234, 246 |
| abstract_inverted_index.to | 33, 88, 221 |
| abstract_inverted_index.y) | 63 |
| abstract_inverted_index.(21 | 55 |
| abstract_inverted_index.HRM | 90, 101, 163, 218, 233 |
| abstract_inverted_index.MNV | 75, 103, 208, 243, 259 |
| abstract_inverted_index.OCT | 39, 72, 79, 99, 235 |
| abstract_inverted_index.age | 60 |
| abstract_inverted_index.and | 12, 32, 85, 102, 112, 116, 128, 160, 202, 256 |
| abstract_inverted_index.due | 220 |
| abstract_inverted_index.for | 41, 176 |
| abstract_inverted_index.the | 35, 222 |
| abstract_inverted_index.two | 172 |
| abstract_inverted_index.was | 119, 138, 196 |
| abstract_inverted_index.76.6 | 62 |
| abstract_inverted_index.HRM, | 194 |
| abstract_inverted_index.HRM. | 228 |
| abstract_inverted_index.both | 265 |
| abstract_inverted_index.eyes | 51 |
| abstract_inverted_index.from | 52, 216 |
| abstract_inverted_index.mean | 59, 135 |
| abstract_inverted_index.nAMD | 66 |
| abstract_inverted_index.over | 270 |
| abstract_inverted_index.some | 177, 250, 257 |
| abstract_inverted_index.than | 182, 213 |
| abstract_inverted_index.thin | 227 |
| abstract_inverted_index.this | 47 |
| abstract_inverted_index.time | 110 |
| abstract_inverted_index.very | 226 |
| abstract_inverted_index.were | 67, 86, 106, 174, 210, 267 |
| abstract_inverted_index.when | 140 |
| abstract_inverted_index.with | 64, 165, 168, 241 |
| abstract_inverted_index.(HRM) | 11 |
| abstract_inverted_index.(MNV) | 18 |
| abstract_inverted_index.(OCT) | 23 |
| abstract_inverted_index.0.78) | 157 |
| abstract_inverted_index.after | 198 |
| abstract_inverted_index.areas | 105, 164, 209 |
| abstract_inverted_index.being | 180 |
| abstract_inverted_index.data. | 73 |
| abstract_inverted_index.fluid | 192 |
| abstract_inverted_index.least | 125 |
| abstract_inverted_index.model | 97 |
| abstract_inverted_index.scans | 25, 236 |
| abstract_inverted_index.sizes | 144 |
| abstract_inverted_index.those | 214 |
| abstract_inverted_index.three | 199 |
| abstract_inverted_index.time. | 271 |
| abstract_inverted_index.truth | 84 |
| abstract_inverted_index.using | 69, 121 |
| abstract_inverted_index.which | 195 |
| abstract_inverted_index.Manual | 74 |
| abstract_inverted_index.assess | 34 |
| abstract_inverted_index.during | 203, 261 |
| abstract_inverted_index.ground | 83 |
| abstract_inverted_index.growth | 137 |
| abstract_inverted_index.highly | 133, 268 |
| abstract_inverted_index.larger | 181 |
| abstract_inverted_index.lesion | 43, 104, 136, 143 |
| abstract_inverted_index.longer | 169 |
| abstract_inverted_index.manual | 13, 115, 183, 223, 242, 258 |
| abstract_inverted_index.nU-Net | 96 |
| abstract_inverted_index.robust | 129 |
| abstract_inverted_index.scans. | 100 |
| abstract_inverted_index.served | 81 |
| abstract_inverted_index.strong | 152, 238 |
| abstract_inverted_index.study, | 49 |
| abstract_inverted_index.volume | 24 |
| abstract_inverted_index.(nAMD), | 31 |
| abstract_inverted_index.Despite | 249 |
| abstract_inverted_index.HRM/MNV | 142 |
| abstract_inverted_index.Methods | 45 |
| abstract_inverted_index.Pearson | 122 |
| abstract_inverted_index.Purpose | 1 |
| abstract_inverted_index.Results | 131 |
| abstract_inverted_index.aspects | 173 |
| abstract_inverted_index.between | 114, 158, 264 |
| abstract_inverted_index.compare | 3 |
| abstract_inverted_index.derived | 215 |
| abstract_inverted_index.en-face | 78 |
| abstract_inverted_index.macular | 16, 29 |
| abstract_inverted_index.methods | 266 |
| abstract_inverted_index.optical | 20 |
| abstract_inverted_index.overall | 153, 239 |
| abstract_inverted_index.points, | 111 |
| abstract_inverted_index.similar | 134 |
| abstract_inverted_index.smaller | 212 |
| abstract_inverted_index.squares | 126 |
| abstract_inverted_index.AI-based | 117, 217, 230, 251 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 171 |
| abstract_inverted_index.analyzed | 68 |
| abstract_inverted_index.baseline | 61, 255 |
| abstract_inverted_index.compared | 87 |
| abstract_inverted_index.included | 189 |
| abstract_inverted_index.manually | 161, 206 |
| abstract_inverted_index.material | 10 |
| abstract_inverted_index.multiple | 109 |
| abstract_inverted_index.observed | 139 |
| abstract_inverted_index.ordinary | 124 |
| abstract_inverted_index.patients | 54 |
| abstract_inverted_index.resorbed | 197 |
| abstract_inverted_index.revealed | 150 |
| abstract_inverted_index.AI-driven | 38 |
| abstract_inverted_index.agreement | 113, 240 |
| abstract_inverted_index.annotated | 162, 207 |
| abstract_inverted_index.anti-VEGF | 200 |
| abstract_inverted_index.baseline, | 186 |
| abstract_inverted_index.coherence | 21 |
| abstract_inverted_index.comparing | 141 |
| abstract_inverted_index.evaluated | 120 |
| abstract_inverted_index.exudative | 65 |
| abstract_inverted_index.generated | 92 |
| abstract_inverted_index.occurring | 253 |
| abstract_inverted_index.(AI)-based | 6 |
| abstract_inverted_index.artificial | 4 |
| abstract_inverted_index.comparable | 269 |
| abstract_inverted_index.comparison | 149 |
| abstract_inverted_index.follow-up, | 205, 262 |
| abstract_inverted_index.follow-up. | 170 |
| abstract_inverted_index.increasing | 166 |
| abstract_inverted_index.quantified | 107 |
| abstract_inverted_index.regression | 127 |
| abstract_inverted_index.subretinal | 191 |
| abstract_inverted_index.tomography | 22 |
| abstract_inverted_index.Conclusions | 229 |
| abstract_inverted_index.age-related | 28 |
| abstract_inverted_index.annotations | 7 |
| abstract_inverted_index.correlation | 154 |
| abstract_inverted_index.demarcation | 14 |
| abstract_inverted_index.injections, | 201 |
| abstract_inverted_index.longer-term | 204 |
| abstract_inverted_index.monitoring. | 44 |
| abstract_inverted_index.neovascular | 27 |
| abstract_inverted_index.projections | 80 |
| abstract_inverted_index.regression. | 130 |
| abstract_inverted_index.responsible | 175 |
| abstract_inverted_index.suitability | 36 |
| abstract_inverted_index.AI-predicted | 89, 159 |
| abstract_inverted_index.assessments. | 248 |
| abstract_inverted_index.correlation, | 123 |
| abstract_inverted_index.degeneration | 30 |
| abstract_inverted_index.demarcations | 76 |
| abstract_inverted_index.demonstrates | 237 |
| abstract_inverted_index.intelligence | 5 |
| abstract_inverted_index.longitudinal | 42, 70, 146, 247 |
| abstract_inverted_index.measurements | 118, 179, 188, 263 |
| abstract_inverted_index.occasionally | 211 |
| abstract_inverted_index.particularly | 245 |
| abstract_inverted_index.segmentation | 40, 219, 231 |
| abstract_inverted_index.significance | 167 |
| abstract_inverted_index.measurements, | 244 |
| abstract_inverted_index.measurements. | 147 |
| abstract_inverted_index.measurements: | 184 |
| abstract_inverted_index.retrospective | 48 |
| abstract_inverted_index.segmentations | 91 |
| abstract_inverted_index.Point-by-point | 148 |
| abstract_inverted_index.hyperreflective | 9, 190 |
| abstract_inverted_index.overestimations | 252 |
| abstract_inverted_index.spectral-domain | 71 |
| abstract_inverted_index.underestimation | 224 |
| abstract_inverted_index.underestimations | 260 |
| abstract_inverted_index.neovascularization | 17 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5119007152 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |