Automated MRI Field of View Prescription from Region of Interest Prediction by Intra-stack Attention Neural Network Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2211.04703
Manual prescription of the field of view (FOV) by MRI technologists is variable and prolongs the scanning process. Often, the FOV is too large or crops critical anatomy. We propose a deep-learning framework, trained by radiologists' supervision, for automating FOV prescription. An intra-stack shared feature extraction network and an attention network are used to process a stack of 2D image inputs to generate output scalars defining the location of a rectangular region of interest (ROI). The attention mechanism is used to make the model focus on the small number of informative slices in a stack. Then the smallest FOV that makes the neural network predicted ROI free of aliasing is calculated by an algebraic operation derived from MR sampling theory. We retrospectively collected 595 cases between February 2018 and February 2022. The framework's performance is examined quantitatively with intersection over union (IoU) and pixel error on position, and qualitatively with a reader study. We use the t-test for comparing quantitative results from all models and a radiologist. The proposed model achieves an average IoU of 0.867 and average ROI position error of 9.06 out of 512 pixels on 80 test cases, significantly better (P<0.05) than two baseline models and not significantly different from a radiologist (P>0.12). Finally, the FOV given by the proposed framework achieves an acceptance rate of 92% from an experienced radiologist.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2211.04703
- https://arxiv.org/pdf/2211.04703
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4308757497
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4308757497Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2211.04703Digital Object Identifier
- Title
-
Automated MRI Field of View Prescription from Region of Interest Prediction by Intra-stack Attention Neural NetworkWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-09Full publication date if available
- Authors
-
Ke Lei, Ali Syed, Xucheng Zhu, John M. Pauly, Shreyas VasanawalaList of authors in order
- Landing page
-
https://arxiv.org/abs/2211.04703Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2211.04703Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2211.04703Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Artificial neural network, Pixel, Region of interest, Stack (abstract data type), Process (computing), Position (finance), Field (mathematics), Field of view, Computer vision, Intersection (aeronautics), Feature (linguistics), Variable (mathematics), Image (mathematics), Pattern recognition (psychology), Mathematics, Engineering, Pure mathematics, Aerospace engineering, Economics, Operating system, Philosophy, Finance, Linguistics, Programming language, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4308757497 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2211.04703 |
| ids.doi | https://doi.org/10.48550/arxiv.2211.04703 |
| ids.openalex | https://openalex.org/W4308757497 |
| fwci | 0.0 |
| type | preprint |
| title | Automated MRI Field of View Prescription from Region of Interest Prediction by Intra-stack Attention Neural Network |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12422 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[1].id | https://openalex.org/T14510 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9983999729156494 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Medical Imaging and Analysis |
| topics[2].id | https://openalex.org/T12386 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9939000010490417 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Advanced X-ray and CT Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7177348136901855 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6871744394302368 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C50644808 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6829961538314819 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[2].display_name | Artificial neural network |
| concepts[3].id | https://openalex.org/C160633673 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6517333388328552 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[3].display_name | Pixel |
| concepts[4].id | https://openalex.org/C19609008 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6400970816612244 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2138203 |
| concepts[4].display_name | Region of interest |
| concepts[5].id | https://openalex.org/C9395851 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6305751800537109 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q177929 |
| concepts[5].display_name | Stack (abstract data type) |
| concepts[6].id | https://openalex.org/C98045186 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5676665306091309 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[6].display_name | Process (computing) |
| concepts[7].id | https://openalex.org/C198082294 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5351176261901855 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3399648 |
| concepts[7].display_name | Position (finance) |
| concepts[8].id | https://openalex.org/C9652623 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5324040055274963 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[8].display_name | Field (mathematics) |
| concepts[9].id | https://openalex.org/C150627866 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5301742553710938 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1076893 |
| concepts[9].display_name | Field of view |
| concepts[10].id | https://openalex.org/C31972630 |
| concepts[10].level | 1 |
| concepts[10].score | 0.525931179523468 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[10].display_name | Computer vision |
| concepts[11].id | https://openalex.org/C64543145 |
| concepts[11].level | 2 |
| concepts[11].score | 0.5251265168190002 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q162942 |
| concepts[11].display_name | Intersection (aeronautics) |
| concepts[12].id | https://openalex.org/C2776401178 |
| concepts[12].level | 2 |
| concepts[12].score | 0.5247167348861694 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[12].display_name | Feature (linguistics) |
| concepts[13].id | https://openalex.org/C182365436 |
| concepts[13].level | 2 |
| concepts[13].score | 0.4647589921951294 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q50701 |
| concepts[13].display_name | Variable (mathematics) |
| concepts[14].id | https://openalex.org/C115961682 |
| concepts[14].level | 2 |
| concepts[14].score | 0.4300912618637085 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[14].display_name | Image (mathematics) |
| concepts[15].id | https://openalex.org/C153180895 |
| concepts[15].level | 2 |
| concepts[15].score | 0.4058327376842499 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[15].display_name | Pattern recognition (psychology) |
| concepts[16].id | https://openalex.org/C33923547 |
| concepts[16].level | 0 |
| concepts[16].score | 0.21142303943634033 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[16].display_name | Mathematics |
| concepts[17].id | https://openalex.org/C127413603 |
| concepts[17].level | 0 |
| concepts[17].score | 0.08749315142631531 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[17].display_name | Engineering |
| concepts[18].id | https://openalex.org/C202444582 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[18].display_name | Pure mathematics |
| concepts[19].id | https://openalex.org/C146978453 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[19].display_name | Aerospace engineering |
| concepts[20].id | https://openalex.org/C162324750 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[20].display_name | Economics |
| concepts[21].id | https://openalex.org/C111919701 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[21].display_name | Operating system |
| concepts[22].id | https://openalex.org/C138885662 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[22].display_name | Philosophy |
| concepts[23].id | https://openalex.org/C10138342 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q43015 |
| concepts[23].display_name | Finance |
| concepts[24].id | https://openalex.org/C41895202 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[24].display_name | Linguistics |
| concepts[25].id | https://openalex.org/C199360897 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[25].display_name | Programming language |
| concepts[26].id | https://openalex.org/C134306372 |
| concepts[26].level | 1 |
| concepts[26].score | 0.0 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[26].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7177348136901855 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6871744394302368 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[2].score | 0.6829961538314819 |
| keywords[2].display_name | Artificial neural network |
| keywords[3].id | https://openalex.org/keywords/pixel |
| keywords[3].score | 0.6517333388328552 |
| keywords[3].display_name | Pixel |
| keywords[4].id | https://openalex.org/keywords/region-of-interest |
| keywords[4].score | 0.6400970816612244 |
| keywords[4].display_name | Region of interest |
| keywords[5].id | https://openalex.org/keywords/stack |
| keywords[5].score | 0.6305751800537109 |
| keywords[5].display_name | Stack (abstract data type) |
| keywords[6].id | https://openalex.org/keywords/process |
| keywords[6].score | 0.5676665306091309 |
| keywords[6].display_name | Process (computing) |
| keywords[7].id | https://openalex.org/keywords/position |
| keywords[7].score | 0.5351176261901855 |
| keywords[7].display_name | Position (finance) |
| keywords[8].id | https://openalex.org/keywords/field |
| keywords[8].score | 0.5324040055274963 |
| keywords[8].display_name | Field (mathematics) |
| keywords[9].id | https://openalex.org/keywords/field-of-view |
| keywords[9].score | 0.5301742553710938 |
| keywords[9].display_name | Field of view |
| keywords[10].id | https://openalex.org/keywords/computer-vision |
| keywords[10].score | 0.525931179523468 |
| keywords[10].display_name | Computer vision |
| keywords[11].id | https://openalex.org/keywords/intersection |
| keywords[11].score | 0.5251265168190002 |
| keywords[11].display_name | Intersection (aeronautics) |
| keywords[12].id | https://openalex.org/keywords/feature |
| keywords[12].score | 0.5247167348861694 |
| keywords[12].display_name | Feature (linguistics) |
| keywords[13].id | https://openalex.org/keywords/variable |
| keywords[13].score | 0.4647589921951294 |
| keywords[13].display_name | Variable (mathematics) |
| keywords[14].id | https://openalex.org/keywords/image |
| keywords[14].score | 0.4300912618637085 |
| keywords[14].display_name | Image (mathematics) |
| keywords[15].id | https://openalex.org/keywords/pattern-recognition |
| keywords[15].score | 0.4058327376842499 |
| keywords[15].display_name | Pattern recognition (psychology) |
| keywords[16].id | https://openalex.org/keywords/mathematics |
| keywords[16].score | 0.21142303943634033 |
| keywords[16].display_name | Mathematics |
| keywords[17].id | https://openalex.org/keywords/engineering |
| keywords[17].score | 0.08749315142631531 |
| keywords[17].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2211.04703 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2211.04703 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2211.04703 |
| locations[1].id | doi:10.48550/arxiv.2211.04703 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2211.04703 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5103181880 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2523-5530 |
| authorships[0].author.display_name | Ke Lei |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lei, Ke |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5110944631 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ali Syed |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Syed, Ali B. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5084408239 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5537-5542 |
| authorships[2].author.display_name | Xucheng Zhu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhu, Xucheng |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5008348052 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5918-4172 |
| authorships[3].author.display_name | John M. Pauly |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Pauly, John M. |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5070743328 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1999-6595 |
| authorships[4].author.display_name | Shreyas Vasanawala |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Vasanawala, Shreyas S. |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2211.04703 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Automated MRI Field of View Prescription from Region of Interest Prediction by Intra-stack Attention Neural Network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12422 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Radiomics and Machine Learning in Medical Imaging |
| related_works | https://openalex.org/W2380576232, https://openalex.org/W2937054111, https://openalex.org/W2066223521, https://openalex.org/W2013178899, https://openalex.org/W373327546, https://openalex.org/W2321534397, https://openalex.org/W2064771172, https://openalex.org/W2089141841, https://openalex.org/W2007567267, https://openalex.org/W1979883088 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2211.04703 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2211.04703 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2211.04703 |
| primary_location.id | pmh:oai:arXiv.org:2211.04703 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2211.04703 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2211.04703 |
| publication_date | 2022-11-09 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 30, 55, 69, 93, 150, 165, 203 |
| abstract_inverted_index.2D | 58 |
| abstract_inverted_index.80 | 188 |
| abstract_inverted_index.An | 41 |
| abstract_inverted_index.MR | 117 |
| abstract_inverted_index.We | 28, 120, 153 |
| abstract_inverted_index.an | 48, 112, 171, 215, 221 |
| abstract_inverted_index.by | 8, 34, 111, 210 |
| abstract_inverted_index.in | 92 |
| abstract_inverted_index.is | 11, 21, 78, 109, 134 |
| abstract_inverted_index.of | 2, 5, 57, 68, 72, 89, 107, 174, 181, 184, 218 |
| abstract_inverted_index.on | 85, 145, 187 |
| abstract_inverted_index.or | 24 |
| abstract_inverted_index.to | 53, 61, 80 |
| abstract_inverted_index.512 | 185 |
| abstract_inverted_index.595 | 123 |
| abstract_inverted_index.92% | 219 |
| abstract_inverted_index.FOV | 20, 39, 98, 208 |
| abstract_inverted_index.IoU | 173 |
| abstract_inverted_index.MRI | 9 |
| abstract_inverted_index.ROI | 105, 178 |
| abstract_inverted_index.The | 75, 131, 167 |
| abstract_inverted_index.all | 162 |
| abstract_inverted_index.and | 13, 47, 128, 142, 147, 164, 176, 198 |
| abstract_inverted_index.are | 51 |
| abstract_inverted_index.for | 37, 157 |
| abstract_inverted_index.not | 199 |
| abstract_inverted_index.out | 183 |
| abstract_inverted_index.the | 3, 15, 19, 66, 82, 86, 96, 101, 155, 207, 211 |
| abstract_inverted_index.too | 22 |
| abstract_inverted_index.two | 195 |
| abstract_inverted_index.use | 154 |
| abstract_inverted_index.2018 | 127 |
| abstract_inverted_index.9.06 | 182 |
| abstract_inverted_index.Then | 95 |
| abstract_inverted_index.free | 106 |
| abstract_inverted_index.from | 116, 161, 202, 220 |
| abstract_inverted_index.make | 81 |
| abstract_inverted_index.over | 139 |
| abstract_inverted_index.rate | 217 |
| abstract_inverted_index.test | 189 |
| abstract_inverted_index.than | 194 |
| abstract_inverted_index.that | 99 |
| abstract_inverted_index.used | 52, 79 |
| abstract_inverted_index.view | 6 |
| abstract_inverted_index.with | 137, 149 |
| abstract_inverted_index.(FOV) | 7 |
| abstract_inverted_index.(IoU) | 141 |
| abstract_inverted_index.0.867 | 175 |
| abstract_inverted_index.2022. | 130 |
| abstract_inverted_index.cases | 124 |
| abstract_inverted_index.crops | 25 |
| abstract_inverted_index.error | 144, 180 |
| abstract_inverted_index.field | 4 |
| abstract_inverted_index.focus | 84 |
| abstract_inverted_index.given | 209 |
| abstract_inverted_index.image | 59 |
| abstract_inverted_index.large | 23 |
| abstract_inverted_index.makes | 100 |
| abstract_inverted_index.model | 83, 169 |
| abstract_inverted_index.pixel | 143 |
| abstract_inverted_index.small | 87 |
| abstract_inverted_index.stack | 56 |
| abstract_inverted_index.union | 140 |
| abstract_inverted_index.(ROI). | 74 |
| abstract_inverted_index.Manual | 0 |
| abstract_inverted_index.Often, | 18 |
| abstract_inverted_index.better | 192 |
| abstract_inverted_index.cases, | 190 |
| abstract_inverted_index.inputs | 60 |
| abstract_inverted_index.models | 163, 197 |
| abstract_inverted_index.neural | 102 |
| abstract_inverted_index.number | 88 |
| abstract_inverted_index.output | 63 |
| abstract_inverted_index.pixels | 186 |
| abstract_inverted_index.reader | 151 |
| abstract_inverted_index.region | 71 |
| abstract_inverted_index.shared | 43 |
| abstract_inverted_index.slices | 91 |
| abstract_inverted_index.stack. | 94 |
| abstract_inverted_index.study. | 152 |
| abstract_inverted_index.t-test | 156 |
| abstract_inverted_index.average | 172, 177 |
| abstract_inverted_index.between | 125 |
| abstract_inverted_index.derived | 115 |
| abstract_inverted_index.feature | 44 |
| abstract_inverted_index.network | 46, 50, 103 |
| abstract_inverted_index.process | 54 |
| abstract_inverted_index.propose | 29 |
| abstract_inverted_index.results | 160 |
| abstract_inverted_index.scalars | 64 |
| abstract_inverted_index.theory. | 119 |
| abstract_inverted_index.trained | 33 |
| abstract_inverted_index.February | 126, 129 |
| abstract_inverted_index.Finally, | 206 |
| abstract_inverted_index.achieves | 170, 214 |
| abstract_inverted_index.aliasing | 108 |
| abstract_inverted_index.anatomy. | 27 |
| abstract_inverted_index.baseline | 196 |
| abstract_inverted_index.critical | 26 |
| abstract_inverted_index.defining | 65 |
| abstract_inverted_index.examined | 135 |
| abstract_inverted_index.generate | 62 |
| abstract_inverted_index.interest | 73 |
| abstract_inverted_index.location | 67 |
| abstract_inverted_index.position | 179 |
| abstract_inverted_index.process. | 17 |
| abstract_inverted_index.prolongs | 14 |
| abstract_inverted_index.proposed | 168, 212 |
| abstract_inverted_index.sampling | 118 |
| abstract_inverted_index.scanning | 16 |
| abstract_inverted_index.smallest | 97 |
| abstract_inverted_index.variable | 12 |
| abstract_inverted_index.algebraic | 113 |
| abstract_inverted_index.attention | 49, 76 |
| abstract_inverted_index.collected | 122 |
| abstract_inverted_index.comparing | 158 |
| abstract_inverted_index.different | 201 |
| abstract_inverted_index.framework | 213 |
| abstract_inverted_index.mechanism | 77 |
| abstract_inverted_index.operation | 114 |
| abstract_inverted_index.position, | 146 |
| abstract_inverted_index.predicted | 104 |
| abstract_inverted_index.acceptance | 216 |
| abstract_inverted_index.automating | 38 |
| abstract_inverted_index.calculated | 110 |
| abstract_inverted_index.extraction | 45 |
| abstract_inverted_index.framework, | 32 |
| abstract_inverted_index.(P<0.05) | 193 |
| abstract_inverted_index.experienced | 222 |
| abstract_inverted_index.framework's | 132 |
| abstract_inverted_index.informative | 90 |
| abstract_inverted_index.intra-stack | 42 |
| abstract_inverted_index.performance | 133 |
| abstract_inverted_index.radiologist | 204 |
| abstract_inverted_index.rectangular | 70 |
| abstract_inverted_index.(P>0.12). | 205 |
| abstract_inverted_index.intersection | 138 |
| abstract_inverted_index.prescription | 1 |
| abstract_inverted_index.quantitative | 159 |
| abstract_inverted_index.radiologist. | 166, 223 |
| abstract_inverted_index.supervision, | 36 |
| abstract_inverted_index.deep-learning | 31 |
| abstract_inverted_index.prescription. | 40 |
| abstract_inverted_index.qualitatively | 148 |
| abstract_inverted_index.radiologists' | 35 |
| abstract_inverted_index.significantly | 191, 200 |
| abstract_inverted_index.technologists | 10 |
| abstract_inverted_index.quantitatively | 136 |
| abstract_inverted_index.retrospectively | 121 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |