Automated Parkinson's disease Detection from Images Using Deep Transfer Learning and Optimization Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.58496/bjml/2025/010
The diagnosis and treatment of Parkinson's disease (PD) is critical to effectively managing this progressive neurological disorder, which significantly affects motor and non-motor functions. This study presents a deep transfer learning-based algorithm for PD detection. The features are extracted from handwritten image datasets using pre-trained convolutional neural networks such as ResNet50, VGG19, and Inception-V3. To achieve precise classification, a hybrid classification framework that combines a genetic algorithm-optimized k-nearest neighbour (KNN) classifier with a support vector machine (SVM) is implemented. The proposed model offers a reliable, scalable, and efficient solution for diagnosing Parkinson's disease. The experimental results demonstrate the model's state-of-the-art accuracy. AI-driven methodologies are being used in this research to advance automated medical diagnostics, reduce diagnostic delays, and improve patient outcomes.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.58496/bjml/2025/010
- https://mesopotamian.press/journals/index.php/BJML/article/download/867/816
- OA Status
- diamond
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412648564
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412648564Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.58496/bjml/2025/010Digital Object Identifier
- Title
-
Automated Parkinson's disease Detection from Images Using Deep Transfer Learning and OptimizationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-23Full publication date if available
- Authors
-
Thanaa Alsalem, Mohammed A. AminList of authors in order
- Landing page
-
https://doi.org/10.58496/bjml/2025/010Publisher landing page
- PDF URL
-
https://mesopotamian.press/journals/index.php/BJML/article/download/867/816Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://mesopotamian.press/journals/index.php/BJML/article/download/867/816Direct OA link when available
- Concepts
-
Transfer of learning, Artificial intelligence, Parkinson's disease, Deep learning, Computer science, Pattern recognition (psychology), Machine learning, Disease, Medicine, PathologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412648564 |
|---|---|
| doi | https://doi.org/10.58496/bjml/2025/010 |
| ids.doi | https://doi.org/10.58496/bjml/2025/010 |
| ids.openalex | https://openalex.org/W4412648564 |
| fwci | 4.55217148 |
| type | article |
| title | Automated Parkinson's disease Detection from Images Using Deep Transfer Learning and Optimization |
| biblio.issue | |
| biblio.volume | 2025 |
| biblio.last_page | 125 |
| biblio.first_page | 116 |
| topics[0].id | https://openalex.org/T10085 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.8515999913215637 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2728 |
| topics[0].subfield.display_name | Neurology |
| topics[0].display_name | Parkinson's Disease Mechanisms and Treatments |
| topics[1].id | https://openalex.org/T12707 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.8476999998092651 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Vehicle License Plate Recognition |
| topics[2].id | https://openalex.org/T10863 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.8113999962806702 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2737 |
| topics[2].subfield.display_name | Physiology |
| topics[2].display_name | Voice and Speech Disorders |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C150899416 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6882519721984863 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[0].display_name | Transfer of learning |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5928122997283936 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C2779734285 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5487526059150696 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11085 |
| concepts[2].display_name | Parkinson's disease |
| concepts[3].id | https://openalex.org/C108583219 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5318009257316589 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[3].display_name | Deep learning |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4780978858470917 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.3729535937309265 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.33443596959114075 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C2779134260 |
| concepts[7].level | 2 |
| concepts[7].score | 0.3289017081260681 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[7].display_name | Disease |
| concepts[8].id | https://openalex.org/C71924100 |
| concepts[8].level | 0 |
| concepts[8].score | 0.27347150444984436 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[8].display_name | Medicine |
| concepts[9].id | https://openalex.org/C142724271 |
| concepts[9].level | 1 |
| concepts[9].score | 0.11055615544319153 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[9].display_name | Pathology |
| keywords[0].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[0].score | 0.6882519721984863 |
| keywords[0].display_name | Transfer of learning |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.5928122997283936 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/parkinsons-disease |
| keywords[2].score | 0.5487526059150696 |
| keywords[2].display_name | Parkinson's disease |
| keywords[3].id | https://openalex.org/keywords/deep-learning |
| keywords[3].score | 0.5318009257316589 |
| keywords[3].display_name | Deep learning |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.4780978858470917 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.3729535937309265 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.33443596959114075 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/disease |
| keywords[7].score | 0.3289017081260681 |
| keywords[7].display_name | Disease |
| keywords[8].id | https://openalex.org/keywords/medicine |
| keywords[8].score | 0.27347150444984436 |
| keywords[8].display_name | Medicine |
| keywords[9].id | https://openalex.org/keywords/pathology |
| keywords[9].score | 0.11055615544319153 |
| keywords[9].display_name | Pathology |
| language | en |
| locations[0].id | doi:10.58496/bjml/2025/010 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S5407043201 |
| locations[0].source.issn | 3006-5429 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 3006-5429 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Babylonian Journal of Machine Learning |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://mesopotamian.press/journals/index.php/BJML/article/download/867/816 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Babylonian Journal of Machine Learning |
| locations[0].landing_page_url | https://doi.org/10.58496/bjml/2025/010 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5072116016 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Thanaa Alsalem |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Thanaa Alsalem |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5046264812 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5091-0641 |
| authorships[1].author.display_name | Mohammed A. Amin |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Mohammed Amin |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://mesopotamian.press/journals/index.php/BJML/article/download/867/816 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Automated Parkinson's disease Detection from Images Using Deep Transfer Learning and Optimization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10085 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.8515999913215637 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2728 |
| primary_topic.subfield.display_name | Neurology |
| primary_topic.display_name | Parkinson's Disease Mechanisms and Treatments |
| related_works | https://openalex.org/W4206357785, https://openalex.org/W4281381188, https://openalex.org/W2951211570, https://openalex.org/W3192840557, https://openalex.org/W4375928479, https://openalex.org/W3167935049, https://openalex.org/W3023427754, https://openalex.org/W3131673289, https://openalex.org/W4393011546, https://openalex.org/W4380075502 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.58496/bjml/2025/010 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S5407043201 |
| best_oa_location.source.issn | 3006-5429 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 3006-5429 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Babylonian Journal of Machine Learning |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://mesopotamian.press/journals/index.php/BJML/article/download/867/816 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Babylonian Journal of Machine Learning |
| best_oa_location.landing_page_url | https://doi.org/10.58496/bjml/2025/010 |
| primary_location.id | doi:10.58496/bjml/2025/010 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S5407043201 |
| primary_location.source.issn | 3006-5429 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 3006-5429 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Babylonian Journal of Machine Learning |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://mesopotamian.press/journals/index.php/BJML/article/download/867/816 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Babylonian Journal of Machine Learning |
| primary_location.landing_page_url | https://doi.org/10.58496/bjml/2025/010 |
| publication_date | 2025-07-23 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 27, 58, 64, 72, 83 |
| abstract_inverted_index.PD | 33 |
| abstract_inverted_index.To | 54 |
| abstract_inverted_index.as | 49 |
| abstract_inverted_index.in | 106 |
| abstract_inverted_index.is | 8, 77 |
| abstract_inverted_index.of | 4 |
| abstract_inverted_index.to | 10, 109 |
| abstract_inverted_index.The | 0, 35, 79, 93 |
| abstract_inverted_index.and | 2, 21, 52, 86, 117 |
| abstract_inverted_index.are | 37, 103 |
| abstract_inverted_index.for | 32, 89 |
| abstract_inverted_index.the | 97 |
| abstract_inverted_index.(PD) | 7 |
| abstract_inverted_index.This | 24 |
| abstract_inverted_index.deep | 28 |
| abstract_inverted_index.from | 39 |
| abstract_inverted_index.such | 48 |
| abstract_inverted_index.that | 62 |
| abstract_inverted_index.this | 13, 107 |
| abstract_inverted_index.used | 105 |
| abstract_inverted_index.with | 71 |
| abstract_inverted_index.(KNN) | 69 |
| abstract_inverted_index.(SVM) | 76 |
| abstract_inverted_index.being | 104 |
| abstract_inverted_index.image | 41 |
| abstract_inverted_index.model | 81 |
| abstract_inverted_index.motor | 20 |
| abstract_inverted_index.study | 25 |
| abstract_inverted_index.using | 43 |
| abstract_inverted_index.which | 17 |
| abstract_inverted_index.VGG19, | 51 |
| abstract_inverted_index.hybrid | 59 |
| abstract_inverted_index.neural | 46 |
| abstract_inverted_index.offers | 82 |
| abstract_inverted_index.reduce | 114 |
| abstract_inverted_index.vector | 74 |
| abstract_inverted_index.achieve | 55 |
| abstract_inverted_index.advance | 110 |
| abstract_inverted_index.affects | 19 |
| abstract_inverted_index.delays, | 116 |
| abstract_inverted_index.disease | 6 |
| abstract_inverted_index.genetic | 65 |
| abstract_inverted_index.improve | 118 |
| abstract_inverted_index.machine | 75 |
| abstract_inverted_index.medical | 112 |
| abstract_inverted_index.model's | 98 |
| abstract_inverted_index.patient | 119 |
| abstract_inverted_index.precise | 56 |
| abstract_inverted_index.results | 95 |
| abstract_inverted_index.support | 73 |
| abstract_inverted_index.combines | 63 |
| abstract_inverted_index.critical | 9 |
| abstract_inverted_index.datasets | 42 |
| abstract_inverted_index.disease. | 92 |
| abstract_inverted_index.features | 36 |
| abstract_inverted_index.managing | 12 |
| abstract_inverted_index.networks | 47 |
| abstract_inverted_index.presents | 26 |
| abstract_inverted_index.proposed | 80 |
| abstract_inverted_index.research | 108 |
| abstract_inverted_index.solution | 88 |
| abstract_inverted_index.transfer | 29 |
| abstract_inverted_index.AI-driven | 101 |
| abstract_inverted_index.ResNet50, | 50 |
| abstract_inverted_index.accuracy. | 100 |
| abstract_inverted_index.algorithm | 31 |
| abstract_inverted_index.automated | 111 |
| abstract_inverted_index.diagnosis | 1 |
| abstract_inverted_index.disorder, | 16 |
| abstract_inverted_index.efficient | 87 |
| abstract_inverted_index.extracted | 38 |
| abstract_inverted_index.framework | 61 |
| abstract_inverted_index.k-nearest | 67 |
| abstract_inverted_index.neighbour | 68 |
| abstract_inverted_index.non-motor | 22 |
| abstract_inverted_index.outcomes. | 120 |
| abstract_inverted_index.reliable, | 84 |
| abstract_inverted_index.scalable, | 85 |
| abstract_inverted_index.treatment | 3 |
| abstract_inverted_index.classifier | 70 |
| abstract_inverted_index.detection. | 34 |
| abstract_inverted_index.diagnosing | 90 |
| abstract_inverted_index.diagnostic | 115 |
| abstract_inverted_index.functions. | 23 |
| abstract_inverted_index.Parkinson's | 5, 91 |
| abstract_inverted_index.demonstrate | 96 |
| abstract_inverted_index.effectively | 11 |
| abstract_inverted_index.handwritten | 40 |
| abstract_inverted_index.pre-trained | 44 |
| abstract_inverted_index.progressive | 14 |
| abstract_inverted_index.diagnostics, | 113 |
| abstract_inverted_index.experimental | 94 |
| abstract_inverted_index.implemented. | 78 |
| abstract_inverted_index.neurological | 15 |
| abstract_inverted_index.Inception-V3. | 53 |
| abstract_inverted_index.convolutional | 45 |
| abstract_inverted_index.methodologies | 102 |
| abstract_inverted_index.significantly | 18 |
| abstract_inverted_index.classification | 60 |
| abstract_inverted_index.learning-based | 30 |
| abstract_inverted_index.classification, | 57 |
| abstract_inverted_index.state-of-the-art | 99 |
| abstract_inverted_index.algorithm-optimized | 66 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.89194875 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |