Automated Parkinson’s Disease Diagnosis Using Decomposition Techniques and Deep Learning for Accurate Gait Analysis Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/access.2025.3562566
Parkinson’s disease (PD) is a prevalent neurological disorder that significantly impacts posture and gait, leading to movement abnormalities due to malfunctions in the brain and nervous system. Gait signals are essential for identifying PD, and various techniques have been employed for classification, with a focus on spatiotemporal factors. Additionally, cognitive monitoring systems for PD symptoms have been developed. Recent advancements involve decomposing gait signals using techniques such as empirical mode decomposition (EMD), empirical wavelet transform (EWT), and variational mode decomposition (VMD) to streamline data for improved computational efficiency. Machine learning (ML) and deep learning (DL) algorithms are widely used to enhance classification accuracy. This study integrates decomposition techniques with ML algorithms such as support vector machines (SVMs), artificial neural networks (ANNs), decision trees (DTs), and k-nearest neighbors (k-NNs), as well as DL algorithms such as long short-term memory (LSTM), bidirectional long short-term memory (LSTM), and convolutional neural networks (CNNs), for PD classification. The combination of VMD with the 1D-CNN achieved the highest accuracy, sensitivity, and specificity, with values of 99.1 %, 100 %, and 100 %, respectively. This finding suggests a promising approach for further research in this field. The optimized VMD-1D-CNN combination demonstrated significant potential for accurately diagnosing PD based on gait dynamics. The successful application of these methods highlights the importance of advanced signal processing techniques in improving the detection and management of neurological disorders.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2025.3562566
- OA Status
- gold
- Cited By
- 3
- References
- 60
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409640611
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409640611Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2025.3562566Digital Object Identifier
- Title
-
Automated Parkinson’s Disease Diagnosis Using Decomposition Techniques and Deep Learning for Accurate Gait AnalysisWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
S. Jeba Priya, C. Anand Deva Durai, M. S. P. Subathra, S. Thomas George, Andrew JeyaboseList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2025.3562566Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2025.3562566Direct OA link when available
- Concepts
-
Gait analysis, Computer science, Gait, Artificial intelligence, Decomposition, Parkinson's disease, Deep learning, Pattern recognition (psychology), Physical medicine and rehabilitation, Machine learning, Disease, Medicine, Pathology, Ecology, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- References (count)
-
60Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409640611 |
|---|---|
| doi | https://doi.org/10.1109/access.2025.3562566 |
| ids.doi | https://doi.org/10.1109/access.2025.3562566 |
| ids.openalex | https://openalex.org/W4409640611 |
| fwci | 13.65651444 |
| type | article |
| title | Automated Parkinson’s Disease Diagnosis Using Decomposition Techniques and Deep Learning for Accurate Gait Analysis |
| biblio.issue | |
| biblio.volume | 13 |
| biblio.last_page | 74091 |
| biblio.first_page | 74078 |
| topics[0].id | https://openalex.org/T10085 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9329000115394592 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2728 |
| topics[0].subfield.display_name | Neurology |
| topics[0].display_name | Parkinson's Disease Mechanisms and Treatments |
| topics[1].id | https://openalex.org/T10863 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9100000262260437 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2737 |
| topics[1].subfield.display_name | Physiology |
| topics[1].display_name | Voice and Speech Disorders |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C173906292 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6420726776123047 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1493441 |
| concepts[0].display_name | Gait analysis |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6285474300384521 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C151800584 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5820220112800598 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2370000 |
| concepts[2].display_name | Gait |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5647287368774414 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C124681953 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4855160713195801 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q339062 |
| concepts[4].display_name | Decomposition |
| concepts[5].id | https://openalex.org/C2779734285 |
| concepts[5].level | 3 |
| concepts[5].score | 0.44071629643440247 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11085 |
| concepts[5].display_name | Parkinson's disease |
| concepts[6].id | https://openalex.org/C108583219 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4261623024940491 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[6].display_name | Deep learning |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.3745134472846985 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C99508421 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3628314137458801 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2678675 |
| concepts[8].display_name | Physical medicine and rehabilitation |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.35721445083618164 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C2779134260 |
| concepts[10].level | 2 |
| concepts[10].score | 0.30358681082725525 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[10].display_name | Disease |
| concepts[11].id | https://openalex.org/C71924100 |
| concepts[11].level | 0 |
| concepts[11].score | 0.1363515555858612 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[11].display_name | Medicine |
| concepts[12].id | https://openalex.org/C142724271 |
| concepts[12].level | 1 |
| concepts[12].score | 0.06316861510276794 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[12].display_name | Pathology |
| concepts[13].id | https://openalex.org/C18903297 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[13].display_name | Ecology |
| concepts[14].id | https://openalex.org/C86803240 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[14].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/gait-analysis |
| keywords[0].score | 0.6420726776123047 |
| keywords[0].display_name | Gait analysis |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6285474300384521 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/gait |
| keywords[2].score | 0.5820220112800598 |
| keywords[2].display_name | Gait |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5647287368774414 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/decomposition |
| keywords[4].score | 0.4855160713195801 |
| keywords[4].display_name | Decomposition |
| keywords[5].id | https://openalex.org/keywords/parkinsons-disease |
| keywords[5].score | 0.44071629643440247 |
| keywords[5].display_name | Parkinson's disease |
| keywords[6].id | https://openalex.org/keywords/deep-learning |
| keywords[6].score | 0.4261623024940491 |
| keywords[6].display_name | Deep learning |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.3745134472846985 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/physical-medicine-and-rehabilitation |
| keywords[8].score | 0.3628314137458801 |
| keywords[8].display_name | Physical medicine and rehabilitation |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.35721445083618164 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/disease |
| keywords[10].score | 0.30358681082725525 |
| keywords[10].display_name | Disease |
| keywords[11].id | https://openalex.org/keywords/medicine |
| keywords[11].score | 0.1363515555858612 |
| keywords[11].display_name | Medicine |
| keywords[12].id | https://openalex.org/keywords/pathology |
| keywords[12].score | 0.06316861510276794 |
| keywords[12].display_name | Pathology |
| language | en |
| locations[0].id | doi:10.1109/access.2025.3562566 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2025.3562566 |
| locations[1].id | pmh:oai:doaj.org/article:959f9b5240c941158816feb3b11c9719 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].source.host_organization_lineage | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 13, Pp 74078-74091 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/959f9b5240c941158816feb3b11c9719 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5109597957 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | S. Jeba Priya |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I119668213 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India |
| authorships[0].institutions[0].id | https://openalex.org/I119668213 |
| authorships[0].institutions[0].ror | https://ror.org/03k23nv15 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I119668213 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Karunya University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | S. Jeba Priya |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science and Engineering, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India |
| authorships[1].author.id | https://openalex.org/A5102902025 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | C. Anand Deva Durai |
| authorships[1].countries | SA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I82952536 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science, College of Computer Science, King Khalid University, Abha, Saudi Arabia |
| authorships[1].institutions[0].id | https://openalex.org/I82952536 |
| authorships[1].institutions[0].ror | https://ror.org/052kwzs30 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I82952536 |
| authorships[1].institutions[0].country_code | SA |
| authorships[1].institutions[0].display_name | King Khalid University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | C Anand Deva Durai |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science, College of Computer Science, King Khalid University, Abha, Saudi Arabia |
| authorships[2].author.id | https://openalex.org/A5026266868 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | M. S. P. Subathra |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I119668213 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India |
| authorships[2].institutions[0].id | https://openalex.org/I119668213 |
| authorships[2].institutions[0].ror | https://ror.org/03k23nv15 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I119668213 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Karunya University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | M.S.P. Subathra |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Biomedical Engineering, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India |
| authorships[3].author.id | https://openalex.org/A5055154630 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0304-495X |
| authorships[3].author.display_name | S. Thomas George |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I119668213 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Robotics Engineering, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India |
| authorships[3].institutions[0].id | https://openalex.org/I119668213 |
| authorships[3].institutions[0].ror | https://ror.org/03k23nv15 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I119668213 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Karunya University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | S. Thomas George |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Robotics Engineering, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India |
| authorships[4].author.id | https://openalex.org/A5115673999 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3592-6543 |
| authorships[4].author.display_name | Andrew Jeyabose |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I164861460 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India |
| authorships[4].institutions[0].id | https://openalex.org/I164861460 |
| authorships[4].institutions[0].ror | https://ror.org/02xzytt36 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I164861460 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | Manipal Academy of Higher Education |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Andrew Jeyabose |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2025.3562566 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-04-22T00:00:00 |
| display_name | Automated Parkinson’s Disease Diagnosis Using Decomposition Techniques and Deep Learning for Accurate Gait Analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10085 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9329000115394592 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2728 |
| primary_topic.subfield.display_name | Neurology |
| primary_topic.display_name | Parkinson's Disease Mechanisms and Treatments |
| related_works | https://openalex.org/W2133973503, https://openalex.org/W2008860278, https://openalex.org/W2031771476, https://openalex.org/W2471060339, https://openalex.org/W2148547327, https://openalex.org/W4226236273, https://openalex.org/W2125892956, https://openalex.org/W2130975749, https://openalex.org/W2493973380, https://openalex.org/W2394835211 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2025.3562566 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2025.3562566 |
| primary_location.id | doi:10.1109/access.2025.3562566 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2025.3562566 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3021667571, https://openalex.org/W611016091, https://openalex.org/W2888008754, https://openalex.org/W2464977649, https://openalex.org/W2005445667, https://openalex.org/W1976799057, https://openalex.org/W2031547184, https://openalex.org/W1985386089, https://openalex.org/W2095634651, https://openalex.org/W3092899046, https://openalex.org/W2138443306, https://openalex.org/W2047706369, https://openalex.org/W2021278861, https://openalex.org/W2908129009, https://openalex.org/W2298634118, https://openalex.org/W2916044109, https://openalex.org/W3043651657, https://openalex.org/W2272122054, https://openalex.org/W3131252627, https://openalex.org/W2794295133, https://openalex.org/W2990571471, https://openalex.org/W2524932991, https://openalex.org/W2793602707, https://openalex.org/W3132964541, https://openalex.org/W2992186472, https://openalex.org/W2774455886, https://openalex.org/W2981665155, https://openalex.org/W4206346018, https://openalex.org/W3201162533, https://openalex.org/W4293420767, https://openalex.org/W4293243192, https://openalex.org/W3214640429, https://openalex.org/W4293765642, https://openalex.org/W4303628771, https://openalex.org/W3190828139, https://openalex.org/W4312211366, https://openalex.org/W4280564944, https://openalex.org/W2052513666, https://openalex.org/W2171056747, https://openalex.org/W2156150820, https://openalex.org/W2790874689, https://openalex.org/W3022076500, https://openalex.org/W2810106967, https://openalex.org/W2554037086, https://openalex.org/W2963900505, https://openalex.org/W3006084333, https://openalex.org/W2000982976, https://openalex.org/W2901493626, https://openalex.org/W2958872067, https://openalex.org/W6749302402, https://openalex.org/W1437784467, https://openalex.org/W2087347434, https://openalex.org/W3024301792, https://openalex.org/W4223918474, https://openalex.org/W4200410776, https://openalex.org/W3167620797, https://openalex.org/W4205495647, https://openalex.org/W3185895012, https://openalex.org/W2962949934, https://openalex.org/W2906239552 |
| referenced_works_count | 60 |
| abstract_inverted_index.a | 4, 43, 180 |
| abstract_inverted_index.%, | 170, 172, 175 |
| abstract_inverted_index.DL | 131 |
| abstract_inverted_index.ML | 109 |
| abstract_inverted_index.PD | 53, 150, 199 |
| abstract_inverted_index.as | 67, 112, 128, 130, 134 |
| abstract_inverted_index.in | 21, 186, 218 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.of | 154, 168, 207, 213, 224 |
| abstract_inverted_index.on | 45, 201 |
| abstract_inverted_index.to | 15, 19, 81, 99 |
| abstract_inverted_index.100 | 171, 174 |
| abstract_inverted_index.PD, | 33 |
| abstract_inverted_index.The | 152, 189, 204 |
| abstract_inverted_index.VMD | 155 |
| abstract_inverted_index.and | 12, 24, 34, 76, 91, 124, 144, 164, 173, 222 |
| abstract_inverted_index.are | 29, 96 |
| abstract_inverted_index.due | 18 |
| abstract_inverted_index.for | 31, 40, 52, 84, 149, 183, 196 |
| abstract_inverted_index.the | 22, 157, 160, 211, 220 |
| abstract_inverted_index.(DL) | 94 |
| abstract_inverted_index.(ML) | 90 |
| abstract_inverted_index.(PD) | 2 |
| abstract_inverted_index.99.1 | 169 |
| abstract_inverted_index.Gait | 27 |
| abstract_inverted_index.This | 103, 177 |
| abstract_inverted_index.been | 38, 56 |
| abstract_inverted_index.data | 83 |
| abstract_inverted_index.deep | 92 |
| abstract_inverted_index.gait | 62, 202 |
| abstract_inverted_index.have | 37, 55 |
| abstract_inverted_index.long | 135, 140 |
| abstract_inverted_index.mode | 69, 78 |
| abstract_inverted_index.such | 66, 111, 133 |
| abstract_inverted_index.that | 8 |
| abstract_inverted_index.this | 187 |
| abstract_inverted_index.used | 98 |
| abstract_inverted_index.well | 129 |
| abstract_inverted_index.with | 42, 108, 156, 166 |
| abstract_inverted_index.(VMD) | 80 |
| abstract_inverted_index.based | 200 |
| abstract_inverted_index.brain | 23 |
| abstract_inverted_index.focus | 44 |
| abstract_inverted_index.gait, | 13 |
| abstract_inverted_index.study | 104 |
| abstract_inverted_index.these | 208 |
| abstract_inverted_index.trees | 122 |
| abstract_inverted_index.using | 64 |
| abstract_inverted_index.(DTs), | 123 |
| abstract_inverted_index.(EMD), | 71 |
| abstract_inverted_index.(EWT), | 75 |
| abstract_inverted_index.1D-CNN | 158 |
| abstract_inverted_index.Recent | 58 |
| abstract_inverted_index.field. | 188 |
| abstract_inverted_index.memory | 137, 142 |
| abstract_inverted_index.neural | 118, 146 |
| abstract_inverted_index.signal | 215 |
| abstract_inverted_index.values | 167 |
| abstract_inverted_index.vector | 114 |
| abstract_inverted_index.widely | 97 |
| abstract_inverted_index.(ANNs), | 120 |
| abstract_inverted_index.(CNNs), | 148 |
| abstract_inverted_index.(LSTM), | 138, 143 |
| abstract_inverted_index.(SVMs), | 116 |
| abstract_inverted_index.Machine | 88 |
| abstract_inverted_index.disease | 1 |
| abstract_inverted_index.enhance | 100 |
| abstract_inverted_index.finding | 178 |
| abstract_inverted_index.further | 184 |
| abstract_inverted_index.highest | 161 |
| abstract_inverted_index.impacts | 10 |
| abstract_inverted_index.involve | 60 |
| abstract_inverted_index.leading | 14 |
| abstract_inverted_index.methods | 209 |
| abstract_inverted_index.nervous | 25 |
| abstract_inverted_index.posture | 11 |
| abstract_inverted_index.signals | 28, 63 |
| abstract_inverted_index.support | 113 |
| abstract_inverted_index.system. | 26 |
| abstract_inverted_index.systems | 51 |
| abstract_inverted_index.various | 35 |
| abstract_inverted_index.wavelet | 73 |
| abstract_inverted_index.(k-NNs), | 127 |
| abstract_inverted_index.achieved | 159 |
| abstract_inverted_index.advanced | 214 |
| abstract_inverted_index.approach | 182 |
| abstract_inverted_index.decision | 121 |
| abstract_inverted_index.disorder | 7 |
| abstract_inverted_index.employed | 39 |
| abstract_inverted_index.factors. | 47 |
| abstract_inverted_index.improved | 85 |
| abstract_inverted_index.learning | 89, 93 |
| abstract_inverted_index.machines | 115 |
| abstract_inverted_index.movement | 16 |
| abstract_inverted_index.networks | 119, 147 |
| abstract_inverted_index.research | 185 |
| abstract_inverted_index.suggests | 179 |
| abstract_inverted_index.symptoms | 54 |
| abstract_inverted_index.accuracy, | 162 |
| abstract_inverted_index.accuracy. | 102 |
| abstract_inverted_index.cognitive | 49 |
| abstract_inverted_index.detection | 221 |
| abstract_inverted_index.dynamics. | 203 |
| abstract_inverted_index.empirical | 68, 72 |
| abstract_inverted_index.essential | 30 |
| abstract_inverted_index.improving | 219 |
| abstract_inverted_index.k-nearest | 125 |
| abstract_inverted_index.neighbors | 126 |
| abstract_inverted_index.optimized | 190 |
| abstract_inverted_index.potential | 195 |
| abstract_inverted_index.prevalent | 5 |
| abstract_inverted_index.promising | 181 |
| abstract_inverted_index.transform | 74 |
| abstract_inverted_index.VMD-1D-CNN | 191 |
| abstract_inverted_index.accurately | 197 |
| abstract_inverted_index.algorithms | 95, 110, 132 |
| abstract_inverted_index.artificial | 117 |
| abstract_inverted_index.developed. | 57 |
| abstract_inverted_index.diagnosing | 198 |
| abstract_inverted_index.disorders. | 226 |
| abstract_inverted_index.highlights | 210 |
| abstract_inverted_index.importance | 212 |
| abstract_inverted_index.integrates | 105 |
| abstract_inverted_index.management | 223 |
| abstract_inverted_index.monitoring | 50 |
| abstract_inverted_index.processing | 216 |
| abstract_inverted_index.short-term | 136, 141 |
| abstract_inverted_index.streamline | 82 |
| abstract_inverted_index.successful | 205 |
| abstract_inverted_index.techniques | 36, 65, 107, 217 |
| abstract_inverted_index.application | 206 |
| abstract_inverted_index.combination | 153, 192 |
| abstract_inverted_index.decomposing | 61 |
| abstract_inverted_index.efficiency. | 87 |
| abstract_inverted_index.identifying | 32 |
| abstract_inverted_index.significant | 194 |
| abstract_inverted_index.variational | 77 |
| abstract_inverted_index.advancements | 59 |
| abstract_inverted_index.demonstrated | 193 |
| abstract_inverted_index.malfunctions | 20 |
| abstract_inverted_index.neurological | 6, 225 |
| abstract_inverted_index.sensitivity, | 163 |
| abstract_inverted_index.specificity, | 165 |
| abstract_inverted_index.Additionally, | 48 |
| abstract_inverted_index.abnormalities | 17 |
| abstract_inverted_index.bidirectional | 139 |
| abstract_inverted_index.computational | 86 |
| abstract_inverted_index.convolutional | 145 |
| abstract_inverted_index.decomposition | 70, 79, 106 |
| abstract_inverted_index.respectively. | 176 |
| abstract_inverted_index.significantly | 9 |
| abstract_inverted_index.classification | 101 |
| abstract_inverted_index.spatiotemporal | 46 |
| abstract_inverted_index.classification, | 41 |
| abstract_inverted_index.classification. | 151 |
| abstract_inverted_index.Parkinson’s | 0 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.96359064 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |