Automated Segmentation of Vertebrae on Lateral Chest Radiography Using Deep Learning Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2001.01277
The purpose of this study is to develop an automated algorithm for thoracic vertebral segmentation on chest radiography using deep learning. 124 de-identified lateral chest radiographs on unique patients were obtained. Segmentations of visible vertebrae were manually performed by a medical student and verified by a board-certified radiologist. 74 images were used for training, 10 for validation, and 40 were held out for testing. A U-Net deep convolutional neural network was employed for segmentation, using the sum of dice coefficient and binary cross-entropy as the loss function. On the test set, the algorithm demonstrated an average dice coefficient value of 90.5 and an average intersection-over-union (IoU) of 81.75. Deep learning demonstrates promise in the segmentation of vertebrae on lateral chest radiography.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2001.01277
- https://arxiv.org/pdf/2001.01277
- OA Status
- green
- Cited By
- 2
- References
- 13
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2997005772
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2997005772Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2001.01277Digital Object Identifier
- Title
-
Automated Segmentation of Vertebrae on Lateral Chest Radiography Using Deep LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-05Full publication date if available
- Authors
-
Sanket Badhe, Varun Pratap Singh, Joy Li, Paras LakhaniList of authors in order
- Landing page
-
https://arxiv.org/abs/2001.01277Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2001.01277Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2001.01277Direct OA link when available
- Concepts
-
Sørensen–Dice coefficient, Segmentation, Deep learning, Radiography, Artificial intelligence, Convolutional neural network, Dice, Computer science, Medicine, Pattern recognition (psychology), Image segmentation, Radiology, Mathematics, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 2Per-year citation counts (last 5 years)
- References (count)
-
13Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2997005772 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2001.01277 |
| ids.doi | https://doi.org/10.48550/arxiv.2001.01277 |
| ids.mag | 2997005772 |
| ids.openalex | https://openalex.org/W2997005772 |
| fwci | |
| type | preprint |
| title | Automated Segmentation of Vertebrae on Lateral Chest Radiography Using Deep Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T14510 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Medical Imaging and Analysis |
| topics[1].id | https://openalex.org/T11775 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9976000189781189 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | COVID-19 diagnosis using AI |
| topics[2].id | https://openalex.org/T12386 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9753999710083008 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Advanced X-ray and CT Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C163892561 |
| concepts[0].level | 4 |
| concepts[0].score | 0.7772427797317505 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2613728 |
| concepts[0].display_name | Sørensen–Dice coefficient |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7011454105377197 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C108583219 |
| concepts[2].level | 2 |
| concepts[2].score | 0.688766360282898 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[2].display_name | Deep learning |
| concepts[3].id | https://openalex.org/C36454342 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6597417593002319 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q245341 |
| concepts[3].display_name | Radiography |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6082632541656494 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C81363708 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5583025217056274 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[5].display_name | Convolutional neural network |
| concepts[6].id | https://openalex.org/C22029948 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5351240634918213 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q45089 |
| concepts[6].display_name | Dice |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.45630306005477905 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C71924100 |
| concepts[8].level | 0 |
| concepts[8].score | 0.4318544268608093 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[8].display_name | Medicine |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.38358426094055176 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C124504099 |
| concepts[10].level | 3 |
| concepts[10].score | 0.33285847306251526 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[10].display_name | Image segmentation |
| concepts[11].id | https://openalex.org/C126838900 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2659463882446289 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[11].display_name | Radiology |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.14055973291397095 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C2524010 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[13].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/sørensen–dice-coefficient |
| keywords[0].score | 0.7772427797317505 |
| keywords[0].display_name | Sørensen–Dice coefficient |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.7011454105377197 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/deep-learning |
| keywords[2].score | 0.688766360282898 |
| keywords[2].display_name | Deep learning |
| keywords[3].id | https://openalex.org/keywords/radiography |
| keywords[3].score | 0.6597417593002319 |
| keywords[3].display_name | Radiography |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.6082632541656494 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[5].score | 0.5583025217056274 |
| keywords[5].display_name | Convolutional neural network |
| keywords[6].id | https://openalex.org/keywords/dice |
| keywords[6].score | 0.5351240634918213 |
| keywords[6].display_name | Dice |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.45630306005477905 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/medicine |
| keywords[8].score | 0.4318544268608093 |
| keywords[8].display_name | Medicine |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.38358426094055176 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/image-segmentation |
| keywords[10].score | 0.33285847306251526 |
| keywords[10].display_name | Image segmentation |
| keywords[11].id | https://openalex.org/keywords/radiology |
| keywords[11].score | 0.2659463882446289 |
| keywords[11].display_name | Radiology |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.14055973291397095 |
| keywords[12].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2001.01277 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2001.01277 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2001.01277 |
| locations[1].id | doi:10.48550/arxiv.2001.01277 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2001.01277 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5076085190 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Sanket Badhe |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sanket Badhe |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5012326145 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2148-5604 |
| authorships[1].author.display_name | Varun Pratap Singh |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Varun Singh |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5077288239 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1891-8672 |
| authorships[2].author.display_name | Joy Li |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Joy Li |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5025843916 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3373-9226 |
| authorships[3].author.display_name | Paras Lakhani |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Paras Lakhani |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2001.01277 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2020-01-10T00:00:00 |
| display_name | Automated Segmentation of Vertebrae on Lateral Chest Radiography Using Deep Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T14510 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Medical Imaging and Analysis |
| related_works | https://openalex.org/W3104750253, https://openalex.org/W3021239166, https://openalex.org/W4389060404, https://openalex.org/W2973136608, https://openalex.org/W3012828488, https://openalex.org/W4286233748, https://openalex.org/W4254054209, https://openalex.org/W4200334192, https://openalex.org/W4391935352, https://openalex.org/W2952835238 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2001.01277 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2001.01277 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2001.01277 |
| primary_location.id | pmh:oai:arXiv.org:2001.01277 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2001.01277 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2001.01277 |
| publication_date | 2020-01-05 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W3022291425, https://openalex.org/W2509609015, https://openalex.org/W2123402141, https://openalex.org/W2310992461, https://openalex.org/W2412782625, https://openalex.org/W2613456556, https://openalex.org/W2962914239, https://openalex.org/W1552599449, https://openalex.org/W1901129140, https://openalex.org/W1903029394, https://openalex.org/W2108598243, https://openalex.org/W1967754010, https://openalex.org/W2596649969 |
| referenced_works_count | 13 |
| abstract_inverted_index.A | 64 |
| abstract_inverted_index.a | 39, 45 |
| abstract_inverted_index.10 | 54 |
| abstract_inverted_index.40 | 58 |
| abstract_inverted_index.74 | 48 |
| abstract_inverted_index.On | 87 |
| abstract_inverted_index.an | 8, 94, 102 |
| abstract_inverted_index.as | 83 |
| abstract_inverted_index.by | 38, 44 |
| abstract_inverted_index.in | 112 |
| abstract_inverted_index.is | 5 |
| abstract_inverted_index.of | 2, 32, 77, 99, 106, 115 |
| abstract_inverted_index.on | 15, 26, 117 |
| abstract_inverted_index.to | 6 |
| abstract_inverted_index.124 | 21 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 42, 57, 80, 101 |
| abstract_inverted_index.for | 11, 52, 55, 62, 72 |
| abstract_inverted_index.out | 61 |
| abstract_inverted_index.sum | 76 |
| abstract_inverted_index.the | 75, 84, 88, 91, 113 |
| abstract_inverted_index.was | 70 |
| abstract_inverted_index.90.5 | 100 |
| abstract_inverted_index.Deep | 108 |
| abstract_inverted_index.deep | 19, 66 |
| abstract_inverted_index.dice | 78, 96 |
| abstract_inverted_index.held | 60 |
| abstract_inverted_index.loss | 85 |
| abstract_inverted_index.set, | 90 |
| abstract_inverted_index.test | 89 |
| abstract_inverted_index.this | 3 |
| abstract_inverted_index.used | 51 |
| abstract_inverted_index.were | 29, 35, 50, 59 |
| abstract_inverted_index.(IoU) | 105 |
| abstract_inverted_index.U-Net | 65 |
| abstract_inverted_index.chest | 16, 24, 119 |
| abstract_inverted_index.study | 4 |
| abstract_inverted_index.using | 18, 74 |
| abstract_inverted_index.value | 98 |
| abstract_inverted_index.81.75. | 107 |
| abstract_inverted_index.binary | 81 |
| abstract_inverted_index.images | 49 |
| abstract_inverted_index.neural | 68 |
| abstract_inverted_index.unique | 27 |
| abstract_inverted_index.average | 95, 103 |
| abstract_inverted_index.develop | 7 |
| abstract_inverted_index.lateral | 23, 118 |
| abstract_inverted_index.medical | 40 |
| abstract_inverted_index.network | 69 |
| abstract_inverted_index.promise | 111 |
| abstract_inverted_index.purpose | 1 |
| abstract_inverted_index.student | 41 |
| abstract_inverted_index.visible | 33 |
| abstract_inverted_index.employed | 71 |
| abstract_inverted_index.learning | 109 |
| abstract_inverted_index.manually | 36 |
| abstract_inverted_index.patients | 28 |
| abstract_inverted_index.testing. | 63 |
| abstract_inverted_index.thoracic | 12 |
| abstract_inverted_index.verified | 43 |
| abstract_inverted_index.algorithm | 10, 92 |
| abstract_inverted_index.automated | 9 |
| abstract_inverted_index.function. | 86 |
| abstract_inverted_index.learning. | 20 |
| abstract_inverted_index.obtained. | 30 |
| abstract_inverted_index.performed | 37 |
| abstract_inverted_index.training, | 53 |
| abstract_inverted_index.vertebrae | 34, 116 |
| abstract_inverted_index.vertebral | 13 |
| abstract_inverted_index.coefficient | 79, 97 |
| abstract_inverted_index.radiographs | 25 |
| abstract_inverted_index.radiography | 17 |
| abstract_inverted_index.validation, | 56 |
| abstract_inverted_index.demonstrated | 93 |
| abstract_inverted_index.demonstrates | 110 |
| abstract_inverted_index.radiography. | 120 |
| abstract_inverted_index.radiologist. | 47 |
| abstract_inverted_index.segmentation | 14, 114 |
| abstract_inverted_index.Segmentations | 31 |
| abstract_inverted_index.convolutional | 67 |
| abstract_inverted_index.cross-entropy | 82 |
| abstract_inverted_index.de-identified | 22 |
| abstract_inverted_index.segmentation, | 73 |
| abstract_inverted_index.board-certified | 46 |
| abstract_inverted_index.intersection-over-union | 104 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |