Automated simulation-based design via multi-fidelity active learning and optimisation for laser direct drive implosions Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2508.20878
The design of inertial fusion experiments is a complex task as driver energy must be delivered in a precise manner to a structured target to achieve a fast, but hydrodynamically stable, implosion. Radiation-hydrodynamics simulation codes are an essential tool in this design process. However, multi-dimensional simulations that capture hydrodynamic instabilities are more computationally expensive than optimistic, 1D, spherically symmetric simulations which are often the primary design tool. In this work, we develop a machine learning framework that aims to effectively use information from a large number of 1D simulations to inform design in the presence of hydrodynamic instabilities. We use an ensemble of neural network surrogate models trained on both 1D and 2D data to capture the space of good designs, i.e. those that are robust to hydrodynamic instabilities. We use this surrogate to perform Bayesian optimisation to find optimal designs for a 25 kJ laser driver. We perform hydrodynamic scaling on these designs to confirm the achievement of high gain for a 2 MJ laser driver, using 2D simulations including alpha heating effects.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2508.20878
- https://arxiv.org/pdf/2508.20878
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414450169
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414450169Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2508.20878Digital Object Identifier
- Title
-
Automated simulation-based design via multi-fidelity active learning and optimisation for laser direct drive implosionsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-28Full publication date if available
- Authors
-
A. J. Crilly, P. W. Moloney, Dongyuan Shi, E. A. FerdinandiList of authors in order
- Landing page
-
https://arxiv.org/abs/2508.20878Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2508.20878Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2508.20878Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414450169 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2508.20878 |
| ids.doi | https://doi.org/10.48550/arxiv.2508.20878 |
| ids.openalex | https://openalex.org/W4414450169 |
| fwci | |
| type | preprint |
| title | Automated simulation-based design via multi-fidelity active learning and optimisation for laser direct drive implosions |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10188 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9793000221252441 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2210 |
| topics[0].subfield.display_name | Mechanical Engineering |
| topics[0].display_name | Advanced machining processes and optimization |
| topics[1].id | https://openalex.org/T11301 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9726999998092651 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Advanced Surface Polishing Techniques |
| topics[2].id | https://openalex.org/T10732 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9652000069618225 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2206 |
| topics[2].subfield.display_name | Computational Mechanics |
| topics[2].display_name | Laser Material Processing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2508.20878 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2508.20878 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2508.20878 |
| locations[1].id | doi:10.48550/arxiv.2508.20878 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2508.20878 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5015842567 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | A. J. Crilly |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Crilly, A. J. |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5119710937 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | P. W. Moloney |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Moloney, P. W. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5035317975 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8832-6595 |
| authorships[2].author.display_name | Dongyuan Shi |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shi, D. |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5119710938 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | E. A. Ferdinandi |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Ferdinandi, E. A. |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2508.20878 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Automated simulation-based design via multi-fidelity active learning and optimisation for laser direct drive implosions |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10188 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9793000221252441 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2210 |
| primary_topic.subfield.display_name | Mechanical Engineering |
| primary_topic.display_name | Advanced machining processes and optimization |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2508.20878 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2508.20878 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2508.20878 |
| primary_location.id | pmh:oai:arXiv.org:2508.20878 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2508.20878 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2508.20878 |
| publication_date | 2025-08-28 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.2 | 163 |
| abstract_inverted_index.a | 7, 17, 21, 26, 72, 83, 142, 162 |
| abstract_inverted_index.1D | 87, 110 |
| abstract_inverted_index.25 | 143 |
| abstract_inverted_index.2D | 112, 168 |
| abstract_inverted_index.In | 67 |
| abstract_inverted_index.MJ | 164 |
| abstract_inverted_index.We | 98, 129, 147 |
| abstract_inverted_index.an | 36, 100 |
| abstract_inverted_index.as | 10 |
| abstract_inverted_index.be | 14 |
| abstract_inverted_index.in | 16, 39, 92 |
| abstract_inverted_index.is | 6 |
| abstract_inverted_index.kJ | 144 |
| abstract_inverted_index.of | 2, 86, 95, 102, 118, 158 |
| abstract_inverted_index.on | 108, 151 |
| abstract_inverted_index.to | 20, 24, 78, 89, 114, 126, 133, 137, 154 |
| abstract_inverted_index.we | 70 |
| abstract_inverted_index.1D, | 56 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 111 |
| abstract_inverted_index.are | 35, 50, 61, 124 |
| abstract_inverted_index.but | 28 |
| abstract_inverted_index.for | 141, 161 |
| abstract_inverted_index.the | 63, 93, 116, 156 |
| abstract_inverted_index.use | 80, 99, 130 |
| abstract_inverted_index.aims | 77 |
| abstract_inverted_index.both | 109 |
| abstract_inverted_index.data | 113 |
| abstract_inverted_index.find | 138 |
| abstract_inverted_index.from | 82 |
| abstract_inverted_index.gain | 160 |
| abstract_inverted_index.good | 119 |
| abstract_inverted_index.high | 159 |
| abstract_inverted_index.i.e. | 121 |
| abstract_inverted_index.more | 51 |
| abstract_inverted_index.must | 13 |
| abstract_inverted_index.task | 9 |
| abstract_inverted_index.than | 54 |
| abstract_inverted_index.that | 46, 76, 123 |
| abstract_inverted_index.this | 40, 68, 131 |
| abstract_inverted_index.tool | 38 |
| abstract_inverted_index.alpha | 171 |
| abstract_inverted_index.codes | 34 |
| abstract_inverted_index.fast, | 27 |
| abstract_inverted_index.large | 84 |
| abstract_inverted_index.laser | 145, 165 |
| abstract_inverted_index.often | 62 |
| abstract_inverted_index.space | 117 |
| abstract_inverted_index.these | 152 |
| abstract_inverted_index.those | 122 |
| abstract_inverted_index.tool. | 66 |
| abstract_inverted_index.using | 167 |
| abstract_inverted_index.which | 60 |
| abstract_inverted_index.work, | 69 |
| abstract_inverted_index.design | 1, 41, 65, 91 |
| abstract_inverted_index.driver | 11 |
| abstract_inverted_index.energy | 12 |
| abstract_inverted_index.fusion | 4 |
| abstract_inverted_index.inform | 90 |
| abstract_inverted_index.manner | 19 |
| abstract_inverted_index.models | 106 |
| abstract_inverted_index.neural | 103 |
| abstract_inverted_index.number | 85 |
| abstract_inverted_index.robust | 125 |
| abstract_inverted_index.target | 23 |
| abstract_inverted_index.achieve | 25 |
| abstract_inverted_index.capture | 47, 115 |
| abstract_inverted_index.complex | 8 |
| abstract_inverted_index.confirm | 155 |
| abstract_inverted_index.designs | 140, 153 |
| abstract_inverted_index.develop | 71 |
| abstract_inverted_index.driver, | 166 |
| abstract_inverted_index.driver. | 146 |
| abstract_inverted_index.heating | 172 |
| abstract_inverted_index.machine | 73 |
| abstract_inverted_index.network | 104 |
| abstract_inverted_index.optimal | 139 |
| abstract_inverted_index.perform | 134, 148 |
| abstract_inverted_index.precise | 18 |
| abstract_inverted_index.primary | 64 |
| abstract_inverted_index.scaling | 150 |
| abstract_inverted_index.stable, | 30 |
| abstract_inverted_index.trained | 107 |
| abstract_inverted_index.Bayesian | 135 |
| abstract_inverted_index.However, | 43 |
| abstract_inverted_index.designs, | 120 |
| abstract_inverted_index.effects. | 173 |
| abstract_inverted_index.ensemble | 101 |
| abstract_inverted_index.inertial | 3 |
| abstract_inverted_index.learning | 74 |
| abstract_inverted_index.presence | 94 |
| abstract_inverted_index.process. | 42 |
| abstract_inverted_index.delivered | 15 |
| abstract_inverted_index.essential | 37 |
| abstract_inverted_index.expensive | 53 |
| abstract_inverted_index.framework | 75 |
| abstract_inverted_index.including | 170 |
| abstract_inverted_index.surrogate | 105, 132 |
| abstract_inverted_index.symmetric | 58 |
| abstract_inverted_index.implosion. | 31 |
| abstract_inverted_index.simulation | 33 |
| abstract_inverted_index.structured | 22 |
| abstract_inverted_index.achievement | 157 |
| abstract_inverted_index.effectively | 79 |
| abstract_inverted_index.experiments | 5 |
| abstract_inverted_index.information | 81 |
| abstract_inverted_index.optimistic, | 55 |
| abstract_inverted_index.simulations | 45, 59, 88, 169 |
| abstract_inverted_index.spherically | 57 |
| abstract_inverted_index.hydrodynamic | 48, 96, 127, 149 |
| abstract_inverted_index.optimisation | 136 |
| abstract_inverted_index.instabilities | 49 |
| abstract_inverted_index.instabilities. | 97, 128 |
| abstract_inverted_index.computationally | 52 |
| abstract_inverted_index.hydrodynamically | 29 |
| abstract_inverted_index.multi-dimensional | 44 |
| abstract_inverted_index.Radiation-hydrodynamics | 32 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |