Automated SP3 Workflow Enables Robust Sample Preparation on Proteonano Ultraplex Proteomics Platform Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1101/2025.05.27.656469
The efficiency and reproducibility of sample preparation are critical prerequisites for obtaining reliable results in bottom-up proteomics. To conclude, we systematically evaluated three commonly used sample preparation methods: automated single-pot solid-phase-enhanced sample preparation (SP3), precipitation by organic solvents, and filter-aided sample preparation method (FASP). When processing varying input amounts of HeLa cell lysate (10, 20, 50, 100, and 150 μg), the SP3 method demonstrated strong linearity (R 2 = 0.95), indicating excellent quantitative consistency across a broad protein input range. A comparison between manual SP3 and manual precipitation protocols revealed comparable protein identification numbers, with a correlation coefficient of approximately 0.97. We further developed an automated version of the SP3 method based on the Proteonano Ultraplex Proteomics platform (autoSP3), which yielded highly consistent results with the manual approach, achieving a protein identification overlap of 98.5% (6,949 out of 7,056). These findings support the suitability of the autoSP3 workflow as a robust and scalable approach for high-throughput and reproducible sample preparation in proteomics sample preparation.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2025.05.27.656469
- https://www.biorxiv.org/content/biorxiv/early/2025/05/30/2025.05.27.656469.full.pdf
- OA Status
- green
- References
- 12
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410880345
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410880345Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2025.05.27.656469Digital Object Identifier
- Title
-
Automated SP3 Workflow Enables Robust Sample Preparation on Proteonano Ultraplex Proteomics PlatformWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-30Full publication date if available
- Authors
-
Yì Wáng, Libing Wang, Yonghao Zhang, Xiehua Ouyang, Hao WuList of authors in order
- Landing page
-
https://doi.org/10.1101/2025.05.27.656469Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2025/05/30/2025.05.27.656469.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2025/05/30/2025.05.27.656469.full.pdfDirect OA link when available
- Concepts
-
Workflow, Sample (material), Sample preparation, Proteomics, Computer science, Software engineering, Data science, Chromatography, Chemistry, Database, Gene, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
12Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410880345 |
|---|---|
| doi | https://doi.org/10.1101/2025.05.27.656469 |
| ids.doi | https://doi.org/10.1101/2025.05.27.656469 |
| ids.openalex | https://openalex.org/W4410880345 |
| fwci | 0.0 |
| type | preprint |
| title | Automated SP3 Workflow Enables Robust Sample Preparation on Proteonano Ultraplex Proteomics Platform |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10519 |
| topics[0].field.id | https://openalex.org/fields/16 |
| topics[0].field.display_name | Chemistry |
| topics[0].score | 0.9559999704360962 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1607 |
| topics[0].subfield.display_name | Spectroscopy |
| topics[0].display_name | Advanced Proteomics Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C177212765 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8318729996681213 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q627335 |
| concepts[0].display_name | Workflow |
| concepts[1].id | https://openalex.org/C198531522 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5403078198432922 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q485146 |
| concepts[1].display_name | Sample (material) |
| concepts[2].id | https://openalex.org/C2778576202 |
| concepts[2].level | 2 |
| concepts[2].score | 0.48391634225845337 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2540164 |
| concepts[2].display_name | Sample preparation |
| concepts[3].id | https://openalex.org/C46111723 |
| concepts[3].level | 3 |
| concepts[3].score | 0.47966980934143066 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q471857 |
| concepts[3].display_name | Proteomics |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.47794345021247864 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C115903868 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3784855604171753 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q80993 |
| concepts[5].display_name | Software engineering |
| concepts[6].id | https://openalex.org/C2522767166 |
| concepts[6].level | 1 |
| concepts[6].score | 0.32470279932022095 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[6].display_name | Data science |
| concepts[7].id | https://openalex.org/C43617362 |
| concepts[7].level | 1 |
| concepts[7].score | 0.29876944422721863 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[7].display_name | Chromatography |
| concepts[8].id | https://openalex.org/C185592680 |
| concepts[8].level | 0 |
| concepts[8].score | 0.21371722221374512 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[8].display_name | Chemistry |
| concepts[9].id | https://openalex.org/C77088390 |
| concepts[9].level | 1 |
| concepts[9].score | 0.16063547134399414 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[9].display_name | Database |
| concepts[10].id | https://openalex.org/C104317684 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[10].display_name | Gene |
| concepts[11].id | https://openalex.org/C55493867 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[11].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/workflow |
| keywords[0].score | 0.8318729996681213 |
| keywords[0].display_name | Workflow |
| keywords[1].id | https://openalex.org/keywords/sample |
| keywords[1].score | 0.5403078198432922 |
| keywords[1].display_name | Sample (material) |
| keywords[2].id | https://openalex.org/keywords/sample-preparation |
| keywords[2].score | 0.48391634225845337 |
| keywords[2].display_name | Sample preparation |
| keywords[3].id | https://openalex.org/keywords/proteomics |
| keywords[3].score | 0.47966980934143066 |
| keywords[3].display_name | Proteomics |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.47794345021247864 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/software-engineering |
| keywords[5].score | 0.3784855604171753 |
| keywords[5].display_name | Software engineering |
| keywords[6].id | https://openalex.org/keywords/data-science |
| keywords[6].score | 0.32470279932022095 |
| keywords[6].display_name | Data science |
| keywords[7].id | https://openalex.org/keywords/chromatography |
| keywords[7].score | 0.29876944422721863 |
| keywords[7].display_name | Chromatography |
| keywords[8].id | https://openalex.org/keywords/chemistry |
| keywords[8].score | 0.21371722221374512 |
| keywords[8].display_name | Chemistry |
| keywords[9].id | https://openalex.org/keywords/database |
| keywords[9].score | 0.16063547134399414 |
| keywords[9].display_name | Database |
| language | en |
| locations[0].id | doi:10.1101/2025.05.27.656469 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2025/05/30/2025.05.27.656469.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2025.05.27.656469 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5108047889 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5697-0717 |
| authorships[0].author.display_name | Yì Wáng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yi Wang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5021407600 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9041-7074 |
| authorships[1].author.display_name | Libing Wang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Libing Wang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5103140278 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0087-7868 |
| authorships[2].author.display_name | Yonghao Zhang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yonghao Zhang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5102555903 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Xiehua Ouyang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xiehua Ouyang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5037168508 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6276-6114 |
| authorships[4].author.display_name | Hao Wu |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Hao Wu |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2025/05/30/2025.05.27.656469.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Automated SP3 Workflow Enables Robust Sample Preparation on Proteonano Ultraplex Proteomics Platform |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10519 |
| primary_topic.field.id | https://openalex.org/fields/16 |
| primary_topic.field.display_name | Chemistry |
| primary_topic.score | 0.9559999704360962 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1607 |
| primary_topic.subfield.display_name | Spectroscopy |
| primary_topic.display_name | Advanced Proteomics Techniques and Applications |
| related_works | https://openalex.org/W4238675884, https://openalex.org/W4238238172, https://openalex.org/W4236278520, https://openalex.org/W2349445879, https://openalex.org/W2315598954, https://openalex.org/W4386784614, https://openalex.org/W3022020934, https://openalex.org/W4389243014, https://openalex.org/W4200474776, https://openalex.org/W1655866052 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2025.05.27.656469 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2025/05/30/2025.05.27.656469.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2025.05.27.656469 |
| primary_location.id | doi:10.1101/2025.05.27.656469 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2025/05/30/2025.05.27.656469.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2025.05.27.656469 |
| publication_date | 2025-05-30 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2756780707, https://openalex.org/W2900884817, https://openalex.org/W2999209745, https://openalex.org/W2087481305, https://openalex.org/W2079843936, https://openalex.org/W2116206670, https://openalex.org/W3213542070, https://openalex.org/W3134978995, https://openalex.org/W2124348590, https://openalex.org/W2037199116, https://openalex.org/W2901906577, https://openalex.org/W3150635270 |
| referenced_works_count | 12 |
| abstract_inverted_index.2 | 68 |
| abstract_inverted_index.= | 69 |
| abstract_inverted_index.A | 81 |
| abstract_inverted_index.a | 76, 96, 130, 150 |
| abstract_inverted_index.(R | 67 |
| abstract_inverted_index.To | 18 |
| abstract_inverted_index.We | 102 |
| abstract_inverted_index.an | 105 |
| abstract_inverted_index.as | 149 |
| abstract_inverted_index.by | 36 |
| abstract_inverted_index.in | 15, 161 |
| abstract_inverted_index.of | 5, 50, 99, 108, 134, 138, 145 |
| abstract_inverted_index.on | 113 |
| abstract_inverted_index.we | 20 |
| abstract_inverted_index.150 | 59 |
| abstract_inverted_index.20, | 55 |
| abstract_inverted_index.50, | 56 |
| abstract_inverted_index.SP3 | 62, 85, 110 |
| abstract_inverted_index.The | 1 |
| abstract_inverted_index.and | 3, 39, 58, 86, 152, 157 |
| abstract_inverted_index.are | 8 |
| abstract_inverted_index.for | 11, 155 |
| abstract_inverted_index.out | 137 |
| abstract_inverted_index.the | 61, 109, 114, 126, 143, 146 |
| abstract_inverted_index.(10, | 54 |
| abstract_inverted_index.100, | 57 |
| abstract_inverted_index.HeLa | 51 |
| abstract_inverted_index.When | 45 |
| abstract_inverted_index.cell | 52 |
| abstract_inverted_index.used | 25 |
| abstract_inverted_index.with | 95, 125 |
| abstract_inverted_index.0.97. | 101 |
| abstract_inverted_index.98.5% | 135 |
| abstract_inverted_index.These | 140 |
| abstract_inverted_index.based | 112 |
| abstract_inverted_index.broad | 77 |
| abstract_inverted_index.input | 48, 79 |
| abstract_inverted_index.three | 23 |
| abstract_inverted_index.which | 120 |
| abstract_inverted_index.μg), | 60 |
| abstract_inverted_index.(6,949 | 136 |
| abstract_inverted_index.(SP3), | 34 |
| abstract_inverted_index.0.95), | 70 |
| abstract_inverted_index.across | 75 |
| abstract_inverted_index.highly | 122 |
| abstract_inverted_index.lysate | 53 |
| abstract_inverted_index.manual | 84, 87, 127 |
| abstract_inverted_index.method | 43, 63, 111 |
| abstract_inverted_index.range. | 80 |
| abstract_inverted_index.robust | 151 |
| abstract_inverted_index.sample | 6, 26, 32, 41, 159, 163 |
| abstract_inverted_index.strong | 65 |
| abstract_inverted_index.(FASP). | 44 |
| abstract_inverted_index.7,056). | 139 |
| abstract_inverted_index.amounts | 49 |
| abstract_inverted_index.autoSP3 | 147 |
| abstract_inverted_index.between | 83 |
| abstract_inverted_index.further | 103 |
| abstract_inverted_index.organic | 37 |
| abstract_inverted_index.overlap | 133 |
| abstract_inverted_index.protein | 78, 92, 131 |
| abstract_inverted_index.results | 14, 124 |
| abstract_inverted_index.support | 142 |
| abstract_inverted_index.varying | 47 |
| abstract_inverted_index.version | 107 |
| abstract_inverted_index.yielded | 121 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.approach | 154 |
| abstract_inverted_index.commonly | 24 |
| abstract_inverted_index.critical | 9 |
| abstract_inverted_index.findings | 141 |
| abstract_inverted_index.methods: | 28 |
| abstract_inverted_index.numbers, | 94 |
| abstract_inverted_index.platform | 118 |
| abstract_inverted_index.reliable | 13 |
| abstract_inverted_index.revealed | 90 |
| abstract_inverted_index.scalable | 153 |
| abstract_inverted_index.workflow | 148 |
| abstract_inverted_index.Ultraplex | 116 |
| abstract_inverted_index.achieving | 129 |
| abstract_inverted_index.approach, | 128 |
| abstract_inverted_index.automated | 29, 106 |
| abstract_inverted_index.bottom-up | 16 |
| abstract_inverted_index.conclude, | 19 |
| abstract_inverted_index.developed | 104 |
| abstract_inverted_index.evaluated | 22 |
| abstract_inverted_index.excellent | 72 |
| abstract_inverted_index.linearity | 66 |
| abstract_inverted_index.obtaining | 12 |
| abstract_inverted_index.protocols | 89 |
| abstract_inverted_index.solvents, | 38 |
| abstract_inverted_index.(autoSP3), | 119 |
| abstract_inverted_index.Proteomics | 117 |
| abstract_inverted_index.Proteonano | 115 |
| abstract_inverted_index.comparable | 91 |
| abstract_inverted_index.comparison | 82 |
| abstract_inverted_index.consistent | 123 |
| abstract_inverted_index.efficiency | 2 |
| abstract_inverted_index.indicating | 71 |
| abstract_inverted_index.processing | 46 |
| abstract_inverted_index.proteomics | 162 |
| abstract_inverted_index.single-pot | 30 |
| abstract_inverted_index.coefficient | 98 |
| abstract_inverted_index.consistency | 74 |
| abstract_inverted_index.correlation | 97 |
| abstract_inverted_index.preparation | 7, 27, 33, 42, 160 |
| abstract_inverted_index.proteomics. | 17 |
| abstract_inverted_index.suitability | 144 |
| abstract_inverted_index.demonstrated | 64 |
| abstract_inverted_index.filter-aided | 40 |
| abstract_inverted_index.preparation. | 164 |
| abstract_inverted_index.quantitative | 73 |
| abstract_inverted_index.reproducible | 158 |
| abstract_inverted_index.approximately | 100 |
| abstract_inverted_index.precipitation | 35, 88 |
| abstract_inverted_index.prerequisites | 10 |
| abstract_inverted_index.identification | 93, 132 |
| abstract_inverted_index.systematically | 21 |
| abstract_inverted_index.high-throughput | 156 |
| abstract_inverted_index.reproducibility | 4 |
| abstract_inverted_index.solid-phase-enhanced | 31 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.20513375 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |