Automatic BASED scoring on scalp EEG in children with infantile spasms using convolutional neural network Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3389/fmolb.2022.931688
In recent years, the Burden of Amplitudes and Epileptiform Discharges (BASED) score has been used as a reliable, accurate, and feasible electroencephalogram (EEG) grading scale for infantile spasms. However, manual EEG annotation is, in general, very time-consuming, and BASED scoring is no exception. Convolutional neural networks (CNNs) have proven their great potential in many EEG classification problems. However, very few research studies have focused on the use of CNNs for BASED scoring, a challenging but vital task in the diagnosis and treatment of infantile spasms. This study proposes an automatic BASED scoring framework using EEG and a deep CNN. The feasibility of using CNN for automatic BASED scoring was investigated in 36 patients with infantile spasms by annotating their long-term EEG data with four levels of the BASED score (scores 5, 4, 3, and ≤2). In the validation set, the accuracy was 96.9% by applying a multi-layer CNN to classify the EEG data as a 4-label problem. The extensive experiments have demonstrated that our proposed approach offers high accuracy and, hence, is an important step toward an automatic BASED scoring algorithm. To the best of our knowledge, this is the first attempt to use a CNN to construct a BASED-based scoring model.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/fmolb.2022.931688
- https://www.frontiersin.org/articles/10.3389/fmolb.2022.931688/pdf
- OA Status
- gold
- Cited By
- 5
- References
- 23
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4292470369
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4292470369Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fmolb.2022.931688Digital Object Identifier
- Title
-
Automatic BASED scoring on scalp EEG in children with infantile spasms using convolutional neural networkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-08-10Full publication date if available
- Authors
-
Yuying Fan, Duo Chen, Hua Wang, Yijie Pan, Xueping Peng, Xueyan Liu, Yunhui LiuList of authors in order
- Landing page
-
https://doi.org/10.3389/fmolb.2022.931688Publisher landing page
- PDF URL
-
https://www.frontiersin.org/articles/10.3389/fmolb.2022.931688/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.frontiersin.org/articles/10.3389/fmolb.2022.931688/pdfDirect OA link when available
- Concepts
-
Electroencephalography, Convolutional neural network, Computer science, Artificial intelligence, Pattern recognition (psychology), Machine learning, Psychology, NeuroscienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1, 2023: 1, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
23Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4292470369 |
|---|---|
| doi | https://doi.org/10.3389/fmolb.2022.931688 |
| ids.doi | https://doi.org/10.3389/fmolb.2022.931688 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36032671 |
| ids.openalex | https://openalex.org/W4292470369 |
| fwci | 0.80260456 |
| type | article |
| title | Automatic BASED scoring on scalp EEG in children with infantile spasms using convolutional neural network |
| biblio.issue | |
| biblio.volume | 9 |
| biblio.last_page | 931688 |
| biblio.first_page | 931688 |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T10094 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9976999759674072 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2738 |
| topics[1].subfield.display_name | Psychiatry and Mental health |
| topics[1].display_name | Epilepsy research and treatment |
| topics[2].id | https://openalex.org/T11601 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9933000206947327 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2804 |
| topics[2].subfield.display_name | Cellular and Molecular Neuroscience |
| topics[2].display_name | Neuroscience and Neural Engineering |
| is_xpac | False |
| apc_list.value | 2490 |
| apc_list.currency | USD |
| apc_list.value_usd | 2490 |
| apc_paid.value | 2490 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2490 |
| concepts[0].id | https://openalex.org/C522805319 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8153278827667236 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q179965 |
| concepts[0].display_name | Electroencephalography |
| concepts[1].id | https://openalex.org/C81363708 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7496476769447327 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[1].display_name | Convolutional neural network |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7047226428985596 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6553090810775757 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5068896412849426 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.41973134875297546 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C15744967 |
| concepts[6].level | 0 |
| concepts[6].score | 0.12507495284080505 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[6].display_name | Psychology |
| concepts[7].id | https://openalex.org/C169760540 |
| concepts[7].level | 1 |
| concepts[7].score | 0.07327079772949219 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[7].display_name | Neuroscience |
| keywords[0].id | https://openalex.org/keywords/electroencephalography |
| keywords[0].score | 0.8153278827667236 |
| keywords[0].display_name | Electroencephalography |
| keywords[1].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[1].score | 0.7496476769447327 |
| keywords[1].display_name | Convolutional neural network |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7047226428985596 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6553090810775757 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.5068896412849426 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.41973134875297546 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/psychology |
| keywords[6].score | 0.12507495284080505 |
| keywords[6].display_name | Psychology |
| keywords[7].id | https://openalex.org/keywords/neuroscience |
| keywords[7].score | 0.07327079772949219 |
| keywords[7].display_name | Neuroscience |
| language | en |
| locations[0].id | doi:10.3389/fmolb.2022.931688 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2595797843 |
| locations[0].source.issn | 2296-889X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2296-889X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Molecular Biosciences |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_lineage_names | Frontiers Media |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.frontiersin.org/articles/10.3389/fmolb.2022.931688/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Molecular Biosciences |
| locations[0].landing_page_url | https://doi.org/10.3389/fmolb.2022.931688 |
| locations[1].id | pmid:36032671 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Frontiers in molecular biosciences |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36032671 |
| locations[2].id | pmh:oai:doaj.org/article:1f3773b2e9ce484688981c3b13346c32 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Frontiers in Molecular Biosciences, Vol 9 (2022) |
| locations[2].landing_page_url | https://doaj.org/article/1f3773b2e9ce484688981c3b13346c32 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:9399419 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Front Mol Biosci |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9399419 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5048529051 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8873-4946 |
| authorships[0].author.display_name | Yuying Fan |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I91656880 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China |
| authorships[0].institutions[0].id | https://openalex.org/I91656880 |
| authorships[0].institutions[0].ror | https://ror.org/032d4f246 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I91656880 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | China Medical University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yuying Fan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China |
| authorships[1].author.id | https://openalex.org/A5100646800 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7451-7764 |
| authorships[1].author.display_name | Duo Chen |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I131434179 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China |
| authorships[1].institutions[0].id | https://openalex.org/I131434179 |
| authorships[1].institutions[0].ror | https://ror.org/04523zj19 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I131434179 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Nanjing University of Chinese Medicine |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Duo Chen |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China |
| authorships[2].author.id | https://openalex.org/A5100403969 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8465-0996 |
| authorships[2].author.display_name | Hua Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I91656880 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China |
| authorships[2].institutions[0].id | https://openalex.org/I91656880 |
| authorships[2].institutions[0].ror | https://ror.org/032d4f246 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I91656880 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | China Medical University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hua Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China |
| authorships[3].author.id | https://openalex.org/A5102024128 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0968-2269 |
| authorships[3].author.display_name | Yijie Pan |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science and Technology, School of Information Science and Technology, Tsinghua University, Beijing, China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I4210165339 |
| authorships[3].affiliations[1].raw_affiliation_string | Ningbo Institute of Information Technology Application, CAS, Ningbo, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210165339 |
| authorships[3].institutions[0].ror | https://ror.org/05nqg3g04 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210165339 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Ningbo Institute of Industrial Technology |
| authorships[3].institutions[1].id | https://openalex.org/I99065089 |
| authorships[3].institutions[1].ror | https://ror.org/03cve4549 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I99065089 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Tsinghua University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yijie Pan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science and Technology, School of Information Science and Technology, Tsinghua University, Beijing, China, Ningbo Institute of Information Technology Application, CAS, Ningbo, China |
| authorships[4].author.id | https://openalex.org/A5043549588 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8901-1472 |
| authorships[4].author.display_name | Xueping Peng |
| authorships[4].countries | AU |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I114017466 |
| authorships[4].affiliations[0].raw_affiliation_string | Australian AI Institute, FEIT, University of Technology Sydney, Sydney, NSW, Australia |
| authorships[4].institutions[0].id | https://openalex.org/I114017466 |
| authorships[4].institutions[0].ror | https://ror.org/03f0f6041 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I114017466 |
| authorships[4].institutions[0].country_code | AU |
| authorships[4].institutions[0].display_name | University of Technology Sydney |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xueping Peng |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Australian AI Institute, FEIT, University of Technology Sydney, Sydney, NSW, Australia |
| authorships[5].author.id | https://openalex.org/A5100665616 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7229-2810 |
| authorships[5].author.display_name | Xueyan Liu |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I91656880 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China |
| authorships[5].institutions[0].id | https://openalex.org/I91656880 |
| authorships[5].institutions[0].ror | https://ror.org/032d4f246 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I91656880 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | China Medical University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Xueyan Liu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China |
| authorships[6].author.id | https://openalex.org/A5100707660 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-3625-6679 |
| authorships[6].author.display_name | Yunhui Liu |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I91656880 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China |
| authorships[6].institutions[0].id | https://openalex.org/I91656880 |
| authorships[6].institutions[0].ror | https://ror.org/032d4f246 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I91656880 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | China Medical University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Yunhui Liu |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.frontiersin.org/articles/10.3389/fmolb.2022.931688/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Automatic BASED scoring on scalp EEG in children with infantile spasms using convolutional neural network |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3107602296, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3209574120, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W2033914206 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3389/fmolb.2022.931688 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2595797843 |
| best_oa_location.source.issn | 2296-889X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2296-889X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Molecular Biosciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_lineage_names | Frontiers Media |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.frontiersin.org/articles/10.3389/fmolb.2022.931688/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Molecular Biosciences |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fmolb.2022.931688 |
| primary_location.id | doi:10.3389/fmolb.2022.931688 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2595797843 |
| primary_location.source.issn | 2296-889X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2296-889X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Molecular Biosciences |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_lineage_names | Frontiers Media |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.frontiersin.org/articles/10.3389/fmolb.2022.931688/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Molecular Biosciences |
| primary_location.landing_page_url | https://doi.org/10.3389/fmolb.2022.931688 |
| publication_date | 2022-08-10 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3160080151, https://openalex.org/W2766629910, https://openalex.org/W2766075405, https://openalex.org/W3010098749, https://openalex.org/W2082407534, https://openalex.org/W2765508101, https://openalex.org/W2903149374, https://openalex.org/W2909595773, https://openalex.org/W4200022053, https://openalex.org/W2559463885, https://openalex.org/W2919115771, https://openalex.org/W2164610682, https://openalex.org/W3142278241, https://openalex.org/W2794644122, https://openalex.org/W2741907166, https://openalex.org/W6755369027, https://openalex.org/W2538079766, https://openalex.org/W4224045928, https://openalex.org/W3186856153, https://openalex.org/W1940036272, https://openalex.org/W3166046332, https://openalex.org/W2898703120, https://openalex.org/W3102455230 |
| referenced_works_count | 23 |
| abstract_inverted_index.a | 16, 72, 96, 145, 154, 194, 198 |
| abstract_inverted_index.3, | 132 |
| abstract_inverted_index.36 | 111 |
| abstract_inverted_index.4, | 131 |
| abstract_inverted_index.5, | 130 |
| abstract_inverted_index.In | 0, 135 |
| abstract_inverted_index.To | 181 |
| abstract_inverted_index.an | 88, 172, 176 |
| abstract_inverted_index.as | 15, 153 |
| abstract_inverted_index.by | 116, 143 |
| abstract_inverted_index.in | 33, 52, 77, 110 |
| abstract_inverted_index.is | 40, 171, 188 |
| abstract_inverted_index.no | 41 |
| abstract_inverted_index.of | 5, 67, 82, 101, 125, 184 |
| abstract_inverted_index.on | 64 |
| abstract_inverted_index.to | 148, 192, 196 |
| abstract_inverted_index.CNN | 103, 147, 195 |
| abstract_inverted_index.EEG | 30, 54, 94, 120, 151 |
| abstract_inverted_index.The | 99, 157 |
| abstract_inverted_index.and | 7, 19, 37, 80, 95, 133 |
| abstract_inverted_index.but | 74 |
| abstract_inverted_index.few | 59 |
| abstract_inverted_index.for | 25, 69, 104 |
| abstract_inverted_index.has | 12 |
| abstract_inverted_index.is, | 32 |
| abstract_inverted_index.our | 163, 185 |
| abstract_inverted_index.the | 3, 65, 78, 126, 136, 139, 150, 182, 189 |
| abstract_inverted_index.use | 66, 193 |
| abstract_inverted_index.was | 108, 141 |
| abstract_inverted_index.CNN. | 98 |
| abstract_inverted_index.CNNs | 68 |
| abstract_inverted_index.This | 85 |
| abstract_inverted_index.and, | 169 |
| abstract_inverted_index.been | 13 |
| abstract_inverted_index.best | 183 |
| abstract_inverted_index.data | 121, 152 |
| abstract_inverted_index.deep | 97 |
| abstract_inverted_index.four | 123 |
| abstract_inverted_index.have | 47, 62, 160 |
| abstract_inverted_index.high | 167 |
| abstract_inverted_index.many | 53 |
| abstract_inverted_index.set, | 138 |
| abstract_inverted_index.step | 174 |
| abstract_inverted_index.task | 76 |
| abstract_inverted_index.that | 162 |
| abstract_inverted_index.this | 187 |
| abstract_inverted_index.used | 14 |
| abstract_inverted_index.very | 35, 58 |
| abstract_inverted_index.with | 113, 122 |
| abstract_inverted_index.(EEG) | 22 |
| abstract_inverted_index.96.9% | 142 |
| abstract_inverted_index.BASED | 38, 70, 90, 106, 127, 178 |
| abstract_inverted_index.first | 190 |
| abstract_inverted_index.great | 50 |
| abstract_inverted_index.scale | 24 |
| abstract_inverted_index.score | 11, 128 |
| abstract_inverted_index.study | 86 |
| abstract_inverted_index.their | 49, 118 |
| abstract_inverted_index.using | 93, 102 |
| abstract_inverted_index.vital | 75 |
| abstract_inverted_index.(CNNs) | 46 |
| abstract_inverted_index.Burden | 4 |
| abstract_inverted_index.hence, | 170 |
| abstract_inverted_index.levels | 124 |
| abstract_inverted_index.manual | 29 |
| abstract_inverted_index.model. | 201 |
| abstract_inverted_index.neural | 44 |
| abstract_inverted_index.offers | 166 |
| abstract_inverted_index.proven | 48 |
| abstract_inverted_index.recent | 1 |
| abstract_inverted_index.spasms | 115 |
| abstract_inverted_index.toward | 175 |
| abstract_inverted_index.years, | 2 |
| abstract_inverted_index.≤2). | 134 |
| abstract_inverted_index.(BASED) | 10 |
| abstract_inverted_index.(scores | 129 |
| abstract_inverted_index.4-label | 155 |
| abstract_inverted_index.attempt | 191 |
| abstract_inverted_index.focused | 63 |
| abstract_inverted_index.grading | 23 |
| abstract_inverted_index.scoring | 39, 91, 107, 179, 200 |
| abstract_inverted_index.spasms. | 27, 84 |
| abstract_inverted_index.studies | 61 |
| abstract_inverted_index.However, | 28, 57 |
| abstract_inverted_index.accuracy | 140, 168 |
| abstract_inverted_index.applying | 144 |
| abstract_inverted_index.approach | 165 |
| abstract_inverted_index.classify | 149 |
| abstract_inverted_index.feasible | 20 |
| abstract_inverted_index.general, | 34 |
| abstract_inverted_index.networks | 45 |
| abstract_inverted_index.patients | 112 |
| abstract_inverted_index.problem. | 156 |
| abstract_inverted_index.proposed | 164 |
| abstract_inverted_index.proposes | 87 |
| abstract_inverted_index.research | 60 |
| abstract_inverted_index.scoring, | 71 |
| abstract_inverted_index.accurate, | 18 |
| abstract_inverted_index.automatic | 89, 105, 177 |
| abstract_inverted_index.construct | 197 |
| abstract_inverted_index.diagnosis | 79 |
| abstract_inverted_index.extensive | 158 |
| abstract_inverted_index.framework | 92 |
| abstract_inverted_index.important | 173 |
| abstract_inverted_index.infantile | 26, 83, 114 |
| abstract_inverted_index.long-term | 119 |
| abstract_inverted_index.potential | 51 |
| abstract_inverted_index.problems. | 56 |
| abstract_inverted_index.reliable, | 17 |
| abstract_inverted_index.treatment | 81 |
| abstract_inverted_index.Amplitudes | 6 |
| abstract_inverted_index.Discharges | 9 |
| abstract_inverted_index.algorithm. | 180 |
| abstract_inverted_index.annotating | 117 |
| abstract_inverted_index.annotation | 31 |
| abstract_inverted_index.exception. | 42 |
| abstract_inverted_index.knowledge, | 186 |
| abstract_inverted_index.validation | 137 |
| abstract_inverted_index.BASED-based | 199 |
| abstract_inverted_index.challenging | 73 |
| abstract_inverted_index.experiments | 159 |
| abstract_inverted_index.feasibility | 100 |
| abstract_inverted_index.multi-layer | 146 |
| abstract_inverted_index.Epileptiform | 8 |
| abstract_inverted_index.demonstrated | 161 |
| abstract_inverted_index.investigated | 109 |
| abstract_inverted_index.Convolutional | 43 |
| abstract_inverted_index.classification | 55 |
| abstract_inverted_index.time-consuming, | 36 |
| abstract_inverted_index.electroencephalogram | 21 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5100707660, https://openalex.org/A5100646800 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I131434179, https://openalex.org/I91656880 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.4699999988079071 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.65468773 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |