Automatic biometry of fetal brain MRIs using deep and machine learning techniques Article Swipe
Jiayan She
,
Haiying Huang
,
Zhijun Ye
,
Huang Wei
,
Yan Sun
,
Chuan Liu
,
Weilin Yang
,
Jiaxi Wang
,
Pengfei Ye
,
Lei Zhang
,
Gang Ning
·
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1038/s41598-023-43867-4
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1038/s41598-023-43867-4
Related Topics
Concepts
Correlation coefficient
Magnetic resonance imaging
Correlation
Pearson product-moment correlation coefficient
Segmentation
Artificial intelligence
Fetus
Biometrics
Gestational age
Nuclear medicine
Linear correlation
Computer science
Pattern recognition (psychology)
Medicine
Biomedical engineering
Nuclear magnetic resonance
Mathematics
Physics
Radiology
Pregnancy
Statistics
Machine learning
Biology
Geometry
Genetics
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41598-023-43867-4
- https://www.nature.com/articles/s41598-023-43867-4.pdf
- OA Status
- gold
- Cited By
- 17
- References
- 28
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387774293
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387774293Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41598-023-43867-4Digital Object Identifier
- Title
-
Automatic biometry of fetal brain MRIs using deep and machine learning techniquesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-19Full publication date if available
- Authors
-
Jiayan She, Haiying Huang, Zhijun Ye, Huang Wei, Yan Sun, Chuan Liu, Weilin Yang, Jiaxi Wang, Pengfei Ye, Lei Zhang, Gang NingList of authors in order
- Landing page
-
https://doi.org/10.1038/s41598-023-43867-4Publisher landing page
- PDF URL
-
https://www.nature.com/articles/s41598-023-43867-4.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41598-023-43867-4.pdfDirect OA link when available
- Concepts
-
Correlation coefficient, Magnetic resonance imaging, Correlation, Pearson product-moment correlation coefficient, Segmentation, Artificial intelligence, Fetus, Biometrics, Gestational age, Nuclear medicine, Linear correlation, Computer science, Pattern recognition (psychology), Medicine, Biomedical engineering, Nuclear magnetic resonance, Mathematics, Physics, Radiology, Pregnancy, Statistics, Machine learning, Biology, Geometry, GeneticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
17Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 9, 2024: 8Per-year citation counts (last 5 years)
- References (count)
-
28Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387774293 |
|---|---|
| doi | https://doi.org/10.1038/s41598-023-43867-4 |
| ids.doi | https://doi.org/10.1038/s41598-023-43867-4 |
| ids.openalex | https://openalex.org/W4387774293 |
| fwci | 30.02809711 |
| type | article |
| title | Automatic biometry of fetal brain MRIs using deep and machine learning techniques |
| biblio.issue | 1 |
| biblio.volume | 13 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12552 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2735 |
| topics[0].subfield.display_name | Pediatrics, Perinatology and Child Health |
| topics[0].display_name | Fetal and Pediatric Neurological Disorders |
| topics[1].id | https://openalex.org/T11307 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.994700014591217 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Domain Adaptation and Few-Shot Learning |
| topics[2].id | https://openalex.org/T11184 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9937000274658203 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2735 |
| topics[2].subfield.display_name | Pediatrics, Perinatology and Child Health |
| topics[2].display_name | Neonatal and fetal brain pathology |
| is_xpac | False |
| apc_list.value | 1890 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2190 |
| apc_paid.value | 1890 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2190 |
| concepts[0].id | https://openalex.org/C2780092901 |
| concepts[0].level | 2 |
| concepts[0].score | 0.661475419998169 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3433612 |
| concepts[0].display_name | Correlation coefficient |
| concepts[1].id | https://openalex.org/C143409427 |
| concepts[1].level | 2 |
| concepts[1].score | 0.63962721824646 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q161238 |
| concepts[1].display_name | Magnetic resonance imaging |
| concepts[2].id | https://openalex.org/C117220453 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5878359079360962 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5172842 |
| concepts[2].display_name | Correlation |
| concepts[3].id | https://openalex.org/C55078378 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5664675235748291 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1136628 |
| concepts[3].display_name | Pearson product-moment correlation coefficient |
| concepts[4].id | https://openalex.org/C89600930 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5013251304626465 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[4].display_name | Segmentation |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4875468611717224 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C172680121 |
| concepts[6].level | 3 |
| concepts[6].score | 0.45384684205055237 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q26513 |
| concepts[6].display_name | Fetus |
| concepts[7].id | https://openalex.org/C184297639 |
| concepts[7].level | 2 |
| concepts[7].score | 0.44975394010543823 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q177765 |
| concepts[7].display_name | Biometrics |
| concepts[8].id | https://openalex.org/C2778376644 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4429033398628235 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2253111 |
| concepts[8].display_name | Gestational age |
| concepts[9].id | https://openalex.org/C2989005 |
| concepts[9].level | 1 |
| concepts[9].score | 0.42155390977859497 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q214963 |
| concepts[9].display_name | Nuclear medicine |
| concepts[10].id | https://openalex.org/C2989041947 |
| concepts[10].level | 2 |
| concepts[10].score | 0.41208139061927795 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q186290 |
| concepts[10].display_name | Linear correlation |
| concepts[11].id | https://openalex.org/C41008148 |
| concepts[11].level | 0 |
| concepts[11].score | 0.3946307897567749 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[11].display_name | Computer science |
| concepts[12].id | https://openalex.org/C153180895 |
| concepts[12].level | 2 |
| concepts[12].score | 0.3835993707180023 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[12].display_name | Pattern recognition (psychology) |
| concepts[13].id | https://openalex.org/C71924100 |
| concepts[13].level | 0 |
| concepts[13].score | 0.3496726155281067 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[13].display_name | Medicine |
| concepts[14].id | https://openalex.org/C136229726 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3478968143463135 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q327092 |
| concepts[14].display_name | Biomedical engineering |
| concepts[15].id | https://openalex.org/C46141821 |
| concepts[15].level | 1 |
| concepts[15].score | 0.33228862285614014 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q209402 |
| concepts[15].display_name | Nuclear magnetic resonance |
| concepts[16].id | https://openalex.org/C33923547 |
| concepts[16].level | 0 |
| concepts[16].score | 0.303717702627182 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[16].display_name | Mathematics |
| concepts[17].id | https://openalex.org/C121332964 |
| concepts[17].level | 0 |
| concepts[17].score | 0.21757915616035461 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[17].display_name | Physics |
| concepts[18].id | https://openalex.org/C126838900 |
| concepts[18].level | 1 |
| concepts[18].score | 0.19627591967582703 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[18].display_name | Radiology |
| concepts[19].id | https://openalex.org/C2779234561 |
| concepts[19].level | 2 |
| concepts[19].score | 0.17136365175247192 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q11995 |
| concepts[19].display_name | Pregnancy |
| concepts[20].id | https://openalex.org/C105795698 |
| concepts[20].level | 1 |
| concepts[20].score | 0.10527876019477844 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[20].display_name | Statistics |
| concepts[21].id | https://openalex.org/C119857082 |
| concepts[21].level | 1 |
| concepts[21].score | 0.10441279411315918 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[21].display_name | Machine learning |
| concepts[22].id | https://openalex.org/C86803240 |
| concepts[22].level | 0 |
| concepts[22].score | 0.08612921833992004 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[22].display_name | Biology |
| concepts[23].id | https://openalex.org/C2524010 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[23].display_name | Geometry |
| concepts[24].id | https://openalex.org/C54355233 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[24].display_name | Genetics |
| keywords[0].id | https://openalex.org/keywords/correlation-coefficient |
| keywords[0].score | 0.661475419998169 |
| keywords[0].display_name | Correlation coefficient |
| keywords[1].id | https://openalex.org/keywords/magnetic-resonance-imaging |
| keywords[1].score | 0.63962721824646 |
| keywords[1].display_name | Magnetic resonance imaging |
| keywords[2].id | https://openalex.org/keywords/correlation |
| keywords[2].score | 0.5878359079360962 |
| keywords[2].display_name | Correlation |
| keywords[3].id | https://openalex.org/keywords/pearson-product-moment-correlation-coefficient |
| keywords[3].score | 0.5664675235748291 |
| keywords[3].display_name | Pearson product-moment correlation coefficient |
| keywords[4].id | https://openalex.org/keywords/segmentation |
| keywords[4].score | 0.5013251304626465 |
| keywords[4].display_name | Segmentation |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.4875468611717224 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/fetus |
| keywords[6].score | 0.45384684205055237 |
| keywords[6].display_name | Fetus |
| keywords[7].id | https://openalex.org/keywords/biometrics |
| keywords[7].score | 0.44975394010543823 |
| keywords[7].display_name | Biometrics |
| keywords[8].id | https://openalex.org/keywords/gestational-age |
| keywords[8].score | 0.4429033398628235 |
| keywords[8].display_name | Gestational age |
| keywords[9].id | https://openalex.org/keywords/nuclear-medicine |
| keywords[9].score | 0.42155390977859497 |
| keywords[9].display_name | Nuclear medicine |
| keywords[10].id | https://openalex.org/keywords/linear-correlation |
| keywords[10].score | 0.41208139061927795 |
| keywords[10].display_name | Linear correlation |
| keywords[11].id | https://openalex.org/keywords/computer-science |
| keywords[11].score | 0.3946307897567749 |
| keywords[11].display_name | Computer science |
| keywords[12].id | https://openalex.org/keywords/pattern-recognition |
| keywords[12].score | 0.3835993707180023 |
| keywords[12].display_name | Pattern recognition (psychology) |
| keywords[13].id | https://openalex.org/keywords/medicine |
| keywords[13].score | 0.3496726155281067 |
| keywords[13].display_name | Medicine |
| keywords[14].id | https://openalex.org/keywords/biomedical-engineering |
| keywords[14].score | 0.3478968143463135 |
| keywords[14].display_name | Biomedical engineering |
| keywords[15].id | https://openalex.org/keywords/nuclear-magnetic-resonance |
| keywords[15].score | 0.33228862285614014 |
| keywords[15].display_name | Nuclear magnetic resonance |
| keywords[16].id | https://openalex.org/keywords/mathematics |
| keywords[16].score | 0.303717702627182 |
| keywords[16].display_name | Mathematics |
| keywords[17].id | https://openalex.org/keywords/physics |
| keywords[17].score | 0.21757915616035461 |
| keywords[17].display_name | Physics |
| keywords[18].id | https://openalex.org/keywords/radiology |
| keywords[18].score | 0.19627591967582703 |
| keywords[18].display_name | Radiology |
| keywords[19].id | https://openalex.org/keywords/pregnancy |
| keywords[19].score | 0.17136365175247192 |
| keywords[19].display_name | Pregnancy |
| keywords[20].id | https://openalex.org/keywords/statistics |
| keywords[20].score | 0.10527876019477844 |
| keywords[20].display_name | Statistics |
| keywords[21].id | https://openalex.org/keywords/machine-learning |
| keywords[21].score | 0.10441279411315918 |
| keywords[21].display_name | Machine learning |
| keywords[22].id | https://openalex.org/keywords/biology |
| keywords[22].score | 0.08612921833992004 |
| keywords[22].display_name | Biology |
| language | en |
| locations[0].id | doi:10.1038/s41598-023-43867-4 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S196734849 |
| locations[0].source.issn | 2045-2322 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2045-2322 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Scientific Reports |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.nature.com/articles/s41598-023-43867-4.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Scientific Reports |
| locations[0].landing_page_url | https://doi.org/10.1038/s41598-023-43867-4 |
| locations[1].id | pmh:oai:pubmedcentral.nih.gov:10587162 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S2764455111 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed Central |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | cc-by |
| locations[1].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10587162/pdf/41598_2023_Article_43867.pdf |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Sci Rep |
| locations[1].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10587162 |
| locations[2].id | pmh:oai:doaj.org/article:6204382af20843a1acd87d52ae65d7be |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Scientific Reports, Vol 13, Iss 1, Pp 1-11 (2023) |
| locations[2].landing_page_url | https://doaj.org/article/6204382af20843a1acd87d52ae65d7be |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5104220768 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Jiayan She |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[0].affiliations[0].raw_affiliation_string | Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China |
| authorships[0].institutions[0].id | https://openalex.org/I24185976 |
| authorships[0].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Sichuan University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jiayan She |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China |
| authorships[1].author.id | https://openalex.org/A5101555933 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7292-5542 |
| authorships[1].author.display_name | Haiying Huang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[1].affiliations[0].raw_affiliation_string | Machine Intelligence Laboratory, College of Computer Science, Sichuan University, Chengdu, 610065, People's Republic of China |
| authorships[1].institutions[0].id | https://openalex.org/I24185976 |
| authorships[1].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Sichuan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Haiying Huang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Machine Intelligence Laboratory, College of Computer Science, Sichuan University, Chengdu, 610065, People's Republic of China |
| authorships[2].author.id | https://openalex.org/A5070275344 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Zhijun Ye |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[2].affiliations[0].raw_affiliation_string | Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China |
| authorships[2].institutions[0].id | https://openalex.org/I24185976 |
| authorships[2].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Sichuan University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhijun Ye |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China |
| authorships[3].author.id | https://openalex.org/A5012578113 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3264-3353 |
| authorships[3].author.display_name | Huang Wei |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[3].affiliations[0].raw_affiliation_string | Machine Intelligence Laboratory, College of Computer Science, Sichuan University, Chengdu, 610065, People's Republic of China |
| authorships[3].institutions[0].id | https://openalex.org/I24185976 |
| authorships[3].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Sichuan University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wei Huang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Machine Intelligence Laboratory, College of Computer Science, Sichuan University, Chengdu, 610065, People's Republic of China |
| authorships[4].author.id | https://openalex.org/A5103256633 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3556-7077 |
| authorships[4].author.display_name | Yan Sun |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[4].affiliations[0].raw_affiliation_string | Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China |
| authorships[4].institutions[0].id | https://openalex.org/I24185976 |
| authorships[4].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Sichuan University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yan Sun |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China |
| authorships[5].author.id | https://openalex.org/A5100320812 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8626-5277 |
| authorships[5].author.display_name | Chuan Liu |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[5].affiliations[0].raw_affiliation_string | Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China |
| authorships[5].institutions[0].id | https://openalex.org/I24185976 |
| authorships[5].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Sichuan University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Chuan Liu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China |
| authorships[6].author.id | https://openalex.org/A5077181434 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-3112-3372 |
| authorships[6].author.display_name | Weilin Yang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[6].affiliations[0].raw_affiliation_string | Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China |
| authorships[6].institutions[0].id | https://openalex.org/I24185976 |
| authorships[6].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Sichuan University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Weilin Yang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China |
| authorships[7].author.id | https://openalex.org/A5100711903 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-6043-9953 |
| authorships[7].author.display_name | Jiaxi Wang |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[7].affiliations[0].raw_affiliation_string | Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China |
| authorships[7].institutions[0].id | https://openalex.org/I24185976 |
| authorships[7].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Sichuan University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Jiaxi Wang |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China |
| authorships[8].author.id | https://openalex.org/A5067576518 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Pengfei Ye |
| authorships[8].countries | CN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[8].affiliations[0].raw_affiliation_string | Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China |
| authorships[8].institutions[0].id | https://openalex.org/I24185976 |
| authorships[8].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[8].institutions[0].country_code | CN |
| authorships[8].institutions[0].display_name | Sichuan University |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Pengfei Ye |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China |
| authorships[9].author.id | https://openalex.org/A5040721382 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-2986-1045 |
| authorships[9].author.display_name | Lei Zhang |
| authorships[9].countries | CN |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[9].affiliations[0].raw_affiliation_string | Machine Intelligence Laboratory, College of Computer Science, Sichuan University, Chengdu, 610065, People's Republic of China |
| authorships[9].institutions[0].id | https://openalex.org/I24185976 |
| authorships[9].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[9].institutions[0].country_code | CN |
| authorships[9].institutions[0].display_name | Sichuan University |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Lei Zhang |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Machine Intelligence Laboratory, College of Computer Science, Sichuan University, Chengdu, 610065, People's Republic of China |
| authorships[10].author.id | https://openalex.org/A5101763795 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-1726-362X |
| authorships[10].author.display_name | Gang Ning |
| authorships[10].countries | CN |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[10].affiliations[0].raw_affiliation_string | Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China |
| authorships[10].institutions[0].id | https://openalex.org/I24185976 |
| authorships[10].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[10].institutions[0].country_code | CN |
| authorships[10].institutions[0].display_name | Sichuan University |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Gang Ning |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41598-023-43867-4.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-10-20T00:00:00 |
| display_name | Automatic biometry of fetal brain MRIs using deep and machine learning techniques |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12552 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2735 |
| primary_topic.subfield.display_name | Pediatrics, Perinatology and Child Health |
| primary_topic.display_name | Fetal and Pediatric Neurological Disorders |
| related_works | https://openalex.org/W357196361, https://openalex.org/W3109425891, https://openalex.org/W1036938216, https://openalex.org/W2113714434, https://openalex.org/W2377792686, https://openalex.org/W4200439127, https://openalex.org/W829658220, https://openalex.org/W3096637473, https://openalex.org/W2027314909, https://openalex.org/W2789317406 |
| cited_by_count | 17 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 9 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 8 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1038/s41598-023-43867-4 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S196734849 |
| best_oa_location.source.issn | 2045-2322 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2045-2322 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Scientific Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41598-023-43867-4.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Scientific Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41598-023-43867-4 |
| primary_location.id | doi:10.1038/s41598-023-43867-4 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S196734849 |
| primary_location.source.issn | 2045-2322 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2045-2322 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Scientific Reports |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.nature.com/articles/s41598-023-43867-4.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Scientific Reports |
| primary_location.landing_page_url | https://doi.org/10.1038/s41598-023-43867-4 |
| publication_date | 2023-10-19 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2092669756, https://openalex.org/W2521657821, https://openalex.org/W3082665019, https://openalex.org/W3187949757, https://openalex.org/W2974367350, https://openalex.org/W3110641146, https://openalex.org/W2801373497, https://openalex.org/W2941706027, https://openalex.org/W3014974815, https://openalex.org/W1969954280, https://openalex.org/W3194335723, https://openalex.org/W2555545183, https://openalex.org/W2031838824, https://openalex.org/W2915049635, https://openalex.org/W2749844810, https://openalex.org/W1980926395, https://openalex.org/W3177468972, https://openalex.org/W2626680144, https://openalex.org/W2614604487, https://openalex.org/W2793959032, https://openalex.org/W3110057964, https://openalex.org/W3195381997, https://openalex.org/W3032143626, https://openalex.org/W2018271982, https://openalex.org/W4254519886, https://openalex.org/W4200123143, https://openalex.org/W2561093012, https://openalex.org/W3112701542 |
| referenced_works_count | 28 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 11 |
| citation_normalized_percentile.value | 0.98641274 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |