Automatic Change Detection of Planetary Striped Landform on Mars Surface Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1109/jstars.2024.3371015
Cameras carried by satellites take large-scale images of the planetary surface, which provides data support for exploration missions. With the progress of deep space exploration, the demands to identify surface changes are gradually increasing. There are few studies that focus on planetary surface automatic change detection since it faces the challenges of difficult registration, strong pseudochange, poor automatic detection capacity, etc. To handle these challenges, we propose a deep learning lightweight model SLCD-Net (i.e., striped landform change detection model) for patchwise change detection of the planetary striped landform. SLCD-Net uses the dual-input-based siamese network as the overall architecture to learn the deep semantic information of pre- and posttemporal images. Importantly, SLCD-Net designs a dual-feature multilevel complementary fusion module between two branches of the siamese network, which can learn the cross-temporal complementary features and eliminate the noise impact. Besides, SLCD-Net exploits a spatial attention module after the fusion unit, which further helps to weaken the noise that is produced by fusion. Furthermore, we construct a dataset about dark slope streak (DSS, a striped landform type). Training on our DSS dataset enables SLCD-Net to have an advantage in identifying the variation of DSS. The SLCD-Net's detection performance on multiple planetary surface datasets including our DSS test set proves that it has achieved a breakthrough in robustness and generalization. Not limited to the patchwise task, the change map generated by SLCD-Net applied to different regions also proves that it can be effectively used for pixelwise Mars striped landform change detection.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/jstars.2024.3371015
- https://ieeexplore.ieee.org/ielx7/4609443/4609444/10452792.pdf
- OA Status
- gold
- Cited By
- 4
- References
- 37
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392251694
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392251694Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/jstars.2024.3371015Digital Object Identifier
- Title
-
Automatic Change Detection of Planetary Striped Landform on Mars SurfaceWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Fengqi Zhang, Weifeng Hao, Mao Ye, Zhigang Tu, Fei LiList of authors in order
- Landing page
-
https://doi.org/10.1109/jstars.2024.3371015Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/4609443/4609444/10452792.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/4609443/4609444/10452792.pdfDirect OA link when available
- Concepts
-
Mars Exploration Program, Astrobiology, Landform, Planetary surface, Remote sensing, Geology, Surface (topology), Geomorphology, Physics, Geometry, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
37Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392251694 |
|---|---|
| doi | https://doi.org/10.1109/jstars.2024.3371015 |
| ids.doi | https://doi.org/10.1109/jstars.2024.3371015 |
| ids.openalex | https://openalex.org/W4392251694 |
| fwci | 2.40046497 |
| type | article |
| title | Automatic Change Detection of Planetary Striped Landform on Mars Surface |
| biblio.issue | |
| biblio.volume | 17 |
| biblio.last_page | 5898 |
| biblio.first_page | 5884 |
| grants[0].funder | https://openalex.org/F4320321001 |
| grants[0].award_id | 41804025 |
| grants[0].funder_display_name | National Natural Science Foundation of China |
| grants[1].funder | https://openalex.org/F4320321001 |
| grants[1].award_id | 41874010 |
| grants[1].funder_display_name | National Natural Science Foundation of China |
| grants[2].funder | https://openalex.org/F4320321001 |
| grants[2].award_id | 42030110 |
| grants[2].funder_display_name | National Natural Science Foundation of China |
| topics[0].id | https://openalex.org/T10406 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3103 |
| topics[0].subfield.display_name | Astronomy and Astrophysics |
| topics[0].display_name | Planetary Science and Exploration |
| topics[1].id | https://openalex.org/T14339 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9742000102996826 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image Processing and 3D Reconstruction |
| topics[2].id | https://openalex.org/T12157 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9724000096321106 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Geochemistry and Geologic Mapping |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 1250 |
| apc_list.currency | USD |
| apc_list.value_usd | 1250 |
| apc_paid.value | 1250 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1250 |
| concepts[0].id | https://openalex.org/C83260615 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8066779375076294 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6773121 |
| concepts[0].display_name | Mars Exploration Program |
| concepts[1].id | https://openalex.org/C87355193 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7072502970695496 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q411 |
| concepts[1].display_name | Astrobiology |
| concepts[2].id | https://openalex.org/C108497213 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6512489318847656 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q271669 |
| concepts[2].display_name | Landform |
| concepts[3].id | https://openalex.org/C138774019 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5696020126342773 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7201252 |
| concepts[3].display_name | Planetary surface |
| concepts[4].id | https://openalex.org/C62649853 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5535752773284912 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[4].display_name | Remote sensing |
| concepts[5].id | https://openalex.org/C127313418 |
| concepts[5].level | 0 |
| concepts[5].score | 0.46157845854759216 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[5].display_name | Geology |
| concepts[6].id | https://openalex.org/C2776799497 |
| concepts[6].level | 2 |
| concepts[6].score | 0.425483763217926 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q484298 |
| concepts[6].display_name | Surface (topology) |
| concepts[7].id | https://openalex.org/C114793014 |
| concepts[7].level | 1 |
| concepts[7].score | 0.13417905569076538 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q52109 |
| concepts[7].display_name | Geomorphology |
| concepts[8].id | https://openalex.org/C121332964 |
| concepts[8].level | 0 |
| concepts[8].score | 0.12049761414527893 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[8].display_name | Physics |
| concepts[9].id | https://openalex.org/C2524010 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[9].display_name | Geometry |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/mars-exploration-program |
| keywords[0].score | 0.8066779375076294 |
| keywords[0].display_name | Mars Exploration Program |
| keywords[1].id | https://openalex.org/keywords/astrobiology |
| keywords[1].score | 0.7072502970695496 |
| keywords[1].display_name | Astrobiology |
| keywords[2].id | https://openalex.org/keywords/landform |
| keywords[2].score | 0.6512489318847656 |
| keywords[2].display_name | Landform |
| keywords[3].id | https://openalex.org/keywords/planetary-surface |
| keywords[3].score | 0.5696020126342773 |
| keywords[3].display_name | Planetary surface |
| keywords[4].id | https://openalex.org/keywords/remote-sensing |
| keywords[4].score | 0.5535752773284912 |
| keywords[4].display_name | Remote sensing |
| keywords[5].id | https://openalex.org/keywords/geology |
| keywords[5].score | 0.46157845854759216 |
| keywords[5].display_name | Geology |
| keywords[6].id | https://openalex.org/keywords/surface |
| keywords[6].score | 0.425483763217926 |
| keywords[6].display_name | Surface (topology) |
| keywords[7].id | https://openalex.org/keywords/geomorphology |
| keywords[7].score | 0.13417905569076538 |
| keywords[7].display_name | Geomorphology |
| keywords[8].id | https://openalex.org/keywords/physics |
| keywords[8].score | 0.12049761414527893 |
| keywords[8].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1109/jstars.2024.3371015 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S117727964 |
| locations[0].source.issn | 1939-1404, 2151-1535 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1939-1404 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].license | |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/4609443/4609444/10452792.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.1109/jstars.2024.3371015 |
| locations[1].id | pmh:oai:doaj.org/article:72f7db6f09144bafb4004560a425b60c |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].source.host_organization_lineage | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 17, Pp 5884-5898 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/72f7db6f09144bafb4004560a425b60c |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5040323371 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2547-3851 |
| authorships[0].author.display_name | Fengqi Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I37461747, https://openalex.org/I4210118728 |
| authorships[0].affiliations[0].raw_affiliation_string | State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210118728 |
| authorships[0].institutions[0].ror | https://ror.org/02bpap860 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210118728 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing |
| authorships[0].institutions[1].id | https://openalex.org/I37461747 |
| authorships[0].institutions[1].ror | https://ror.org/033vjfk17 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I37461747 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Wuhan University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fengqi Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China |
| authorships[1].author.id | https://openalex.org/A5063197054 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7231-8956 |
| authorships[1].author.display_name | Weifeng Hao |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I37461747, https://openalex.org/I4210114963 |
| authorships[1].affiliations[0].raw_affiliation_string | Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210114963 |
| authorships[1].institutions[0].ror | https://ror.org/02j693n47 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210114963 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Chinese Academy of Surveying and Mapping |
| authorships[1].institutions[1].id | https://openalex.org/I37461747 |
| authorships[1].institutions[1].ror | https://ror.org/033vjfk17 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I37461747 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Wuhan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Weifeng Hao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan, China |
| authorships[2].author.id | https://openalex.org/A5100682786 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7273-5984 |
| authorships[2].author.display_name | Mao Ye |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I37461747, https://openalex.org/I4210118728 |
| authorships[2].affiliations[0].raw_affiliation_string | State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210118728 |
| authorships[2].institutions[0].ror | https://ror.org/02bpap860 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210118728 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing |
| authorships[2].institutions[1].id | https://openalex.org/I37461747 |
| authorships[2].institutions[1].ror | https://ror.org/033vjfk17 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I37461747 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Wuhan University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mao Ye |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China |
| authorships[3].author.id | https://openalex.org/A5074405661 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5003-2260 |
| authorships[3].author.display_name | Zhigang Tu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I37461747, https://openalex.org/I4210118728 |
| authorships[3].affiliations[0].raw_affiliation_string | State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210118728 |
| authorships[3].institutions[0].ror | https://ror.org/02bpap860 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210118728 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing |
| authorships[3].institutions[1].id | https://openalex.org/I37461747 |
| authorships[3].institutions[1].ror | https://ror.org/033vjfk17 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I37461747 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Wuhan University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhigang Tu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China |
| authorships[4].author.id | https://openalex.org/A5100325751 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5980-5784 |
| authorships[4].author.display_name | Fei Li |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I37461747, https://openalex.org/I4210114963 |
| authorships[4].affiliations[0].raw_affiliation_string | Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan, China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I37461747, https://openalex.org/I4210118728 |
| authorships[4].affiliations[1].raw_affiliation_string | State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210114963 |
| authorships[4].institutions[0].ror | https://ror.org/02j693n47 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210114963 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Chinese Academy of Surveying and Mapping |
| authorships[4].institutions[1].id | https://openalex.org/I4210118728 |
| authorships[4].institutions[1].ror | https://ror.org/02bpap860 |
| authorships[4].institutions[1].type | facility |
| authorships[4].institutions[1].lineage | https://openalex.org/I4210118728 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing |
| authorships[4].institutions[2].id | https://openalex.org/I37461747 |
| authorships[4].institutions[2].ror | https://ror.org/033vjfk17 |
| authorships[4].institutions[2].type | education |
| authorships[4].institutions[2].lineage | https://openalex.org/I37461747 |
| authorships[4].institutions[2].country_code | CN |
| authorships[4].institutions[2].display_name | Wuhan University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Fei Li |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan, China, State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/4609443/4609444/10452792.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Automatic Change Detection of Planetary Striped Landform on Mars Surface |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10406 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3103 |
| primary_topic.subfield.display_name | Astronomy and Astrophysics |
| primary_topic.display_name | Planetary Science and Exploration |
| related_works | https://openalex.org/W1545817325, https://openalex.org/W1520489124, https://openalex.org/W3015786634, https://openalex.org/W2999762813, https://openalex.org/W3085248812, https://openalex.org/W2276798502, https://openalex.org/W774754512, https://openalex.org/W2995460269, https://openalex.org/W40179145, https://openalex.org/W1585137375 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/jstars.2024.3371015 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S117727964 |
| best_oa_location.source.issn | 1939-1404, 2151-1535 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1939-1404 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/4609443/4609444/10452792.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.1109/jstars.2024.3371015 |
| primary_location.id | doi:10.1109/jstars.2024.3371015 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S117727964 |
| primary_location.source.issn | 1939-1404, 2151-1535 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1939-1404 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.license | |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/4609443/4609444/10452792.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.1109/jstars.2024.3371015 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2028483491, https://openalex.org/W2076509405, https://openalex.org/W2020169086, https://openalex.org/W2117586409, https://openalex.org/W2806253398, https://openalex.org/W3203366716, https://openalex.org/W2608045258, https://openalex.org/W4317490014, https://openalex.org/W4295165720, https://openalex.org/W4306377549, https://openalex.org/W4317795263, https://openalex.org/W3200631163, https://openalex.org/W3180796267, https://openalex.org/W2086277408, https://openalex.org/W2041368885, https://openalex.org/W3037640242, https://openalex.org/W4213124617, https://openalex.org/W6763416564, https://openalex.org/W2143238378, https://openalex.org/W6605181679, https://openalex.org/W2014849320, https://openalex.org/W2160466313, https://openalex.org/W2988020997, https://openalex.org/W3164715703, https://openalex.org/W3163207600, https://openalex.org/W3217456364, https://openalex.org/W4321021501, https://openalex.org/W4205674377, https://openalex.org/W4315606133, https://openalex.org/W3217092119, https://openalex.org/W2972854400, https://openalex.org/W2194775991, https://openalex.org/W2752782242, https://openalex.org/W1998780374, https://openalex.org/W2529879068, https://openalex.org/W2523311857, https://openalex.org/W1968991597 |
| referenced_works_count | 37 |
| abstract_inverted_index.a | 67, 112, 140, 163, 170, 210 |
| abstract_inverted_index.To | 61 |
| abstract_inverted_index.an | 183 |
| abstract_inverted_index.as | 94 |
| abstract_inverted_index.be | 237 |
| abstract_inverted_index.by | 2, 158, 226 |
| abstract_inverted_index.in | 185, 212 |
| abstract_inverted_index.is | 156 |
| abstract_inverted_index.it | 47, 207, 235 |
| abstract_inverted_index.of | 7, 21, 51, 83, 104, 121, 189 |
| abstract_inverted_index.on | 40, 175, 195 |
| abstract_inverted_index.to | 27, 98, 151, 181, 218, 229 |
| abstract_inverted_index.we | 65, 161 |
| abstract_inverted_index.DSS | 177, 202 |
| abstract_inverted_index.Not | 216 |
| abstract_inverted_index.The | 191 |
| abstract_inverted_index.and | 106, 132, 214 |
| abstract_inverted_index.are | 31, 35 |
| abstract_inverted_index.can | 126, 236 |
| abstract_inverted_index.few | 36 |
| abstract_inverted_index.for | 15, 79, 240 |
| abstract_inverted_index.has | 208 |
| abstract_inverted_index.map | 224 |
| abstract_inverted_index.our | 176, 201 |
| abstract_inverted_index.set | 204 |
| abstract_inverted_index.the | 8, 19, 25, 49, 84, 90, 95, 100, 122, 128, 134, 145, 153, 187, 219, 222 |
| abstract_inverted_index.two | 119 |
| abstract_inverted_index.DSS. | 190 |
| abstract_inverted_index.Mars | 242 |
| abstract_inverted_index.With | 18 |
| abstract_inverted_index.also | 232 |
| abstract_inverted_index.dark | 166 |
| abstract_inverted_index.data | 13 |
| abstract_inverted_index.deep | 22, 68, 101 |
| abstract_inverted_index.etc. | 60 |
| abstract_inverted_index.have | 182 |
| abstract_inverted_index.poor | 56 |
| abstract_inverted_index.pre- | 105 |
| abstract_inverted_index.take | 4 |
| abstract_inverted_index.test | 203 |
| abstract_inverted_index.that | 38, 155, 206, 234 |
| abstract_inverted_index.used | 239 |
| abstract_inverted_index.uses | 89 |
| abstract_inverted_index.(DSS, | 169 |
| abstract_inverted_index.There | 34 |
| abstract_inverted_index.about | 165 |
| abstract_inverted_index.after | 144 |
| abstract_inverted_index.faces | 48 |
| abstract_inverted_index.focus | 39 |
| abstract_inverted_index.helps | 150 |
| abstract_inverted_index.learn | 99, 127 |
| abstract_inverted_index.model | 71 |
| abstract_inverted_index.noise | 135, 154 |
| abstract_inverted_index.since | 46 |
| abstract_inverted_index.slope | 167 |
| abstract_inverted_index.space | 23 |
| abstract_inverted_index.task, | 221 |
| abstract_inverted_index.these | 63 |
| abstract_inverted_index.unit, | 147 |
| abstract_inverted_index.which | 11, 125, 148 |
| abstract_inverted_index.(i.e., | 73 |
| abstract_inverted_index.change | 44, 76, 81, 223, 245 |
| abstract_inverted_index.fusion | 116, 146 |
| abstract_inverted_index.handle | 62 |
| abstract_inverted_index.images | 6 |
| abstract_inverted_index.model) | 78 |
| abstract_inverted_index.module | 117, 143 |
| abstract_inverted_index.proves | 205, 233 |
| abstract_inverted_index.streak | 168 |
| abstract_inverted_index.strong | 54 |
| abstract_inverted_index.type). | 173 |
| abstract_inverted_index.weaken | 152 |
| abstract_inverted_index.Cameras | 0 |
| abstract_inverted_index.applied | 228 |
| abstract_inverted_index.between | 118 |
| abstract_inverted_index.carried | 1 |
| abstract_inverted_index.changes | 30 |
| abstract_inverted_index.dataset | 164, 178 |
| abstract_inverted_index.demands | 26 |
| abstract_inverted_index.designs | 111 |
| abstract_inverted_index.enables | 179 |
| abstract_inverted_index.further | 149 |
| abstract_inverted_index.fusion. | 159 |
| abstract_inverted_index.images. | 108 |
| abstract_inverted_index.impact. | 136 |
| abstract_inverted_index.limited | 217 |
| abstract_inverted_index.network | 93 |
| abstract_inverted_index.overall | 96 |
| abstract_inverted_index.propose | 66 |
| abstract_inverted_index.regions | 231 |
| abstract_inverted_index.siamese | 92, 123 |
| abstract_inverted_index.spatial | 141 |
| abstract_inverted_index.striped | 74, 86, 171, 243 |
| abstract_inverted_index.studies | 37 |
| abstract_inverted_index.support | 14 |
| abstract_inverted_index.surface | 29, 42, 198 |
| abstract_inverted_index.Besides, | 137 |
| abstract_inverted_index.SLCD-Net | 72, 88, 110, 138, 180, 227 |
| abstract_inverted_index.Training | 174 |
| abstract_inverted_index.achieved | 209 |
| abstract_inverted_index.branches | 120 |
| abstract_inverted_index.datasets | 199 |
| abstract_inverted_index.exploits | 139 |
| abstract_inverted_index.features | 131 |
| abstract_inverted_index.identify | 28 |
| abstract_inverted_index.landform | 75, 172, 244 |
| abstract_inverted_index.learning | 69 |
| abstract_inverted_index.multiple | 196 |
| abstract_inverted_index.network, | 124 |
| abstract_inverted_index.produced | 157 |
| abstract_inverted_index.progress | 20 |
| abstract_inverted_index.provides | 12 |
| abstract_inverted_index.semantic | 102 |
| abstract_inverted_index.surface, | 10 |
| abstract_inverted_index.advantage | 184 |
| abstract_inverted_index.attention | 142 |
| abstract_inverted_index.automatic | 43, 57 |
| abstract_inverted_index.capacity, | 59 |
| abstract_inverted_index.construct | 162 |
| abstract_inverted_index.detection | 45, 58, 77, 82, 193 |
| abstract_inverted_index.different | 230 |
| abstract_inverted_index.difficult | 52 |
| abstract_inverted_index.eliminate | 133 |
| abstract_inverted_index.generated | 225 |
| abstract_inverted_index.gradually | 32 |
| abstract_inverted_index.including | 200 |
| abstract_inverted_index.landform. | 87 |
| abstract_inverted_index.missions. | 17 |
| abstract_inverted_index.patchwise | 80, 220 |
| abstract_inverted_index.pixelwise | 241 |
| abstract_inverted_index.planetary | 9, 41, 85, 197 |
| abstract_inverted_index.variation | 188 |
| abstract_inverted_index.challenges | 50 |
| abstract_inverted_index.detection. | 246 |
| abstract_inverted_index.multilevel | 114 |
| abstract_inverted_index.robustness | 213 |
| abstract_inverted_index.satellites | 3 |
| abstract_inverted_index.challenges, | 64 |
| abstract_inverted_index.effectively | 238 |
| abstract_inverted_index.exploration | 16 |
| abstract_inverted_index.identifying | 186 |
| abstract_inverted_index.increasing. | 33 |
| abstract_inverted_index.information | 103 |
| abstract_inverted_index.large-scale | 5 |
| abstract_inverted_index.lightweight | 70 |
| abstract_inverted_index.performance | 194 |
| abstract_inverted_index.Furthermore, | 160 |
| abstract_inverted_index.Importantly, | 109 |
| abstract_inverted_index.architecture | 97 |
| abstract_inverted_index.breakthrough | 211 |
| abstract_inverted_index.dual-feature | 113 |
| abstract_inverted_index.exploration, | 24 |
| abstract_inverted_index.posttemporal | 107 |
| abstract_inverted_index.complementary | 115, 130 |
| abstract_inverted_index.pseudochange, | 55 |
| abstract_inverted_index.registration, | 53 |
| abstract_inverted_index.cross-temporal | 129 |
| abstract_inverted_index.generalization. | 215 |
| abstract_inverted_index.dual-input-based | 91 |
| abstract_inverted_index.SLCD-Net's | 192 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.6499999761581421 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.83729559 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |