Automatic contouring QA method using a deep learning–based autocontouring system Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1002/acm2.13647
Purpose To determine the most accurate similarity metric when using an independent system to verify automatically generated contours. Methods A reference autocontouring system (primary system to create clinical contours) and a verification autocontouring system (secondary system to test the primary contours) were used to generate a pair of 6 female pelvic structures (UteroCervix [uterus + cervix], CTVn [nodal clinical target volume (CTV)], PAN [para‐aortic lymph nodes], bladder, rectum, and kidneys) on 49 CT scans from our institution and 38 from other institutions. Additionally, clinically acceptable and unacceptable contours were manually generated using the 49 internal CT scans. Eleven similarity metrics (volumetric Dice similarity coefficient (DSC), Hausdorff distance, 95% Hausdorff distance, mean surface distance, and surface DSC with tolerances from 1 to 10 mm) were calculated between the reference and the verification autocontours, and between the manually generated and the verification autocontours. A support vector machine (SVM) was used to determine the threshold that separates clinically acceptable and unacceptable contours for each structure. The 11 metrics were investigated individually and in certain combinations. Linear, radial basis function, sigmoid, and polynomial kernels were tested using the combinations of metrics as inputs for the SVM. Results The highest contouring error detection accuracies were 0.91 for the UteroCervix, 0.90 for the CTVn, 0.89 for the PAN, 0.92 for the bladder, 0.95 for the rectum, and 0.97 for the kidneys and were achieved using surface DSCs with a thickness of 1, 2, or 3 mm. The linear kernel was the most accurate and consistent when a combination of metrics was used as an input for the SVM. However, the best model accuracy from the combinations of metrics was not better than the best model accuracy from a surface DSC as an input. Conclusions We distinguished clinically acceptable contours from clinically unacceptable contours with an accuracy higher than 0.9 for the targets and critical structures in patients with cervical cancer; the most accurate similarity metric was surface DSC with a thickness of 1, 2, or 3 mm.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/acm2.13647
- OA Status
- gold
- Cited By
- 25
- References
- 19
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4280570209
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4280570209Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/acm2.13647Digital Object Identifier
- Title
-
Automatic contouring QA method using a deep learning–based autocontouring systemWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-05-17Full publication date if available
- Authors
-
Dong Joo Rhee, Chidinma P. Anakwenze, B. Rigaud, Anuja Jhingran, Carlos Cárdenas, Lifei Zhang, Surendra Prajapati, Stephen F. Kry, Kristy K. Brock, Beth M. Beadle, William V. Shaw, Frederika O’Reilly, Jeannette Parkes, Hester Burger, Nazia Fakie, Chris Trauernicht, Hannah Simonds, Laurence E. CourtList of authors in order
- Landing page
-
https://doi.org/10.1002/acm2.13647Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1002/acm2.13647Direct OA link when available
- Concepts
-
Contouring, Hausdorff distance, Artificial intelligence, Similarity (geometry), Support vector machine, Mathematics, Computer science, Pattern recognition (psychology), Kernel (algebra), Computer vision, Nuclear medicine, Medicine, Image (mathematics), Combinatorics, Computer graphics (images)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
25Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 7, 2024: 5, 2023: 10, 2022: 3Per-year citation counts (last 5 years)
- References (count)
-
19Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4280570209 |
|---|---|
| doi | https://doi.org/10.1002/acm2.13647 |
| ids.doi | https://doi.org/10.1002/acm2.13647 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/35580067 |
| ids.openalex | https://openalex.org/W4280570209 |
| fwci | 3.72411738 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000465 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Algorithms |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000077321 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Deep Learning |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D005260 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Female |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D006801 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Humans |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D008198 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Lymph Nodes |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D010388 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Pelvis |
| mesh[6].qualifier_ui | Q000379 |
| mesh[6].descriptor_ui | D011880 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | methods |
| mesh[6].descriptor_name | Radiotherapy Planning, Computer-Assisted |
| mesh[7].qualifier_ui | Q000379 |
| mesh[7].descriptor_ui | D014057 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | methods |
| mesh[7].descriptor_name | Tomography, X-Ray Computed |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000465 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Algorithms |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000077321 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Deep Learning |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D005260 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Female |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D006801 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Humans |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D008198 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Lymph Nodes |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D010388 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Pelvis |
| mesh[14].qualifier_ui | Q000379 |
| mesh[14].descriptor_ui | D011880 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | methods |
| mesh[14].descriptor_name | Radiotherapy Planning, Computer-Assisted |
| mesh[15].qualifier_ui | Q000379 |
| mesh[15].descriptor_ui | D014057 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | methods |
| mesh[15].descriptor_name | Tomography, X-Ray Computed |
| type | article |
| title | Automatic contouring QA method using a deep learning–based autocontouring system |
| biblio.issue | 8 |
| biblio.volume | 23 |
| biblio.last_page | e13647 |
| biblio.first_page | e13647 |
| topics[0].id | https://openalex.org/T10335 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9977999925613403 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2730 |
| topics[0].subfield.display_name | Oncology |
| topics[0].display_name | Colorectal Cancer Surgical Treatments |
| topics[1].id | https://openalex.org/T10552 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.995199978351593 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2730 |
| topics[1].subfield.display_name | Oncology |
| topics[1].display_name | Colorectal Cancer Screening and Detection |
| topics[2].id | https://openalex.org/T12422 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9950000047683716 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Radiomics and Machine Learning in Medical Imaging |
| is_xpac | False |
| apc_list.value | 2850 |
| apc_list.currency | EUR |
| apc_list.value_usd | 3575 |
| apc_paid.value | 2850 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 3575 |
| concepts[0].id | https://openalex.org/C2779104521 |
| concepts[0].level | 2 |
| concepts[0].score | 0.896760880947113 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q23058469 |
| concepts[0].display_name | Contouring |
| concepts[1].id | https://openalex.org/C141898687 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7461584806442261 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1501997 |
| concepts[1].display_name | Hausdorff distance |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5826025605201721 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C103278499 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5696242451667786 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[3].display_name | Similarity (geometry) |
| concepts[4].id | https://openalex.org/C12267149 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4652572274208069 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[4].display_name | Support vector machine |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.456236332654953 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.45054635405540466 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.437019944190979 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C74193536 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4197441041469574 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q574844 |
| concepts[8].display_name | Kernel (algebra) |
| concepts[9].id | https://openalex.org/C31972630 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3665222227573395 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[9].display_name | Computer vision |
| concepts[10].id | https://openalex.org/C2989005 |
| concepts[10].level | 1 |
| concepts[10].score | 0.34104713797569275 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q214963 |
| concepts[10].display_name | Nuclear medicine |
| concepts[11].id | https://openalex.org/C71924100 |
| concepts[11].level | 0 |
| concepts[11].score | 0.24512365460395813 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[11].display_name | Medicine |
| concepts[12].id | https://openalex.org/C115961682 |
| concepts[12].level | 2 |
| concepts[12].score | 0.09706899523735046 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[12].display_name | Image (mathematics) |
| concepts[13].id | https://openalex.org/C114614502 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[13].display_name | Combinatorics |
| concepts[14].id | https://openalex.org/C121684516 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7600677 |
| concepts[14].display_name | Computer graphics (images) |
| keywords[0].id | https://openalex.org/keywords/contouring |
| keywords[0].score | 0.896760880947113 |
| keywords[0].display_name | Contouring |
| keywords[1].id | https://openalex.org/keywords/hausdorff-distance |
| keywords[1].score | 0.7461584806442261 |
| keywords[1].display_name | Hausdorff distance |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5826025605201721 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/similarity |
| keywords[3].score | 0.5696242451667786 |
| keywords[3].display_name | Similarity (geometry) |
| keywords[4].id | https://openalex.org/keywords/support-vector-machine |
| keywords[4].score | 0.4652572274208069 |
| keywords[4].display_name | Support vector machine |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.456236332654953 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.45054635405540466 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.437019944190979 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/kernel |
| keywords[8].score | 0.4197441041469574 |
| keywords[8].display_name | Kernel (algebra) |
| keywords[9].id | https://openalex.org/keywords/computer-vision |
| keywords[9].score | 0.3665222227573395 |
| keywords[9].display_name | Computer vision |
| keywords[10].id | https://openalex.org/keywords/nuclear-medicine |
| keywords[10].score | 0.34104713797569275 |
| keywords[10].display_name | Nuclear medicine |
| keywords[11].id | https://openalex.org/keywords/medicine |
| keywords[11].score | 0.24512365460395813 |
| keywords[11].display_name | Medicine |
| keywords[12].id | https://openalex.org/keywords/image |
| keywords[12].score | 0.09706899523735046 |
| keywords[12].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.1002/acm2.13647 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S29972171 |
| locations[0].source.issn | 1526-9914 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1526-9914 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Applied Clinical Medical Physics |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Applied Clinical Medical Physics |
| locations[0].landing_page_url | https://doi.org/10.1002/acm2.13647 |
| locations[1].id | pmid:35580067 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of applied clinical medical physics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/35580067 |
| locations[2].id | pmh:oai:digitalcommons.library.tmc.edu:uthgsbs_docs-3562 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401994 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DigtalCommons @ Texas Medical Center Library (Texas Medical Center) |
| locations[2].source.host_organization | https://openalex.org/I867280407 |
| locations[2].source.host_organization_name | The University of Texas Southwestern Medical Center |
| locations[2].source.host_organization_lineage | https://openalex.org/I867280407 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Faculty, Staff and Student Publications |
| locations[2].landing_page_url | https://digitalcommons.library.tmc.edu/uthgsbs_docs/2623 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:9359039 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | J Appl Clin Med Phys |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9359039 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5008015416 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0486-1556 |
| authorships[0].author.display_name | Dong Joo Rhee |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1343551460 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I44461941 |
| authorships[0].affiliations[1].raw_affiliation_string | The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA |
| authorships[0].institutions[0].id | https://openalex.org/I1343551460 |
| authorships[0].institutions[0].ror | https://ror.org/04twxam07 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I1343551460 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | The University of Texas MD Anderson Cancer Center |
| authorships[0].institutions[1].id | https://openalex.org/I44461941 |
| authorships[0].institutions[1].ror | https://ror.org/048sx0r50 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I44461941 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | University of Houston |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dong Joo Rhee |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA |
| authorships[1].author.id | https://openalex.org/A5043635164 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1324-4410 |
| authorships[1].author.display_name | Chidinma P. Anakwenze |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1343551460 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA |
| authorships[1].institutions[0].id | https://openalex.org/I1343551460 |
| authorships[1].institutions[0].ror | https://ror.org/04twxam07 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I1343551460 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | The University of Texas MD Anderson Cancer Center |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chidinma P. Anakwenze Akinfenwa |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA |
| authorships[2].author.id | https://openalex.org/A5006102311 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0038-429X |
| authorships[2].author.display_name | B. Rigaud |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1343551460 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA |
| authorships[2].institutions[0].id | https://openalex.org/I1343551460 |
| authorships[2].institutions[0].ror | https://ror.org/04twxam07 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I1343551460 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | The University of Texas MD Anderson Cancer Center |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Bastien Rigaud |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA |
| authorships[3].author.id | https://openalex.org/A5041813027 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0697-1815 |
| authorships[3].author.display_name | Anuja Jhingran |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1343551460 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA |
| authorships[3].institutions[0].id | https://openalex.org/I1343551460 |
| authorships[3].institutions[0].ror | https://ror.org/04twxam07 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I1343551460 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | The University of Texas MD Anderson Cancer Center |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Anuja Jhingran |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA |
| authorships[4].author.id | https://openalex.org/A5031020692 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1414-3849 |
| authorships[4].author.display_name | Carlos Cárdenas |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1343551460 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA |
| authorships[4].institutions[0].id | https://openalex.org/I1343551460 |
| authorships[4].institutions[0].ror | https://ror.org/04twxam07 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I1343551460 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | The University of Texas MD Anderson Cancer Center |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Carlos E. Cardenas |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA |
| authorships[5].author.id | https://openalex.org/A5007076214 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0384-1943 |
| authorships[5].author.display_name | Lifei Zhang |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I1343551460 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA |
| authorships[5].institutions[0].id | https://openalex.org/I1343551460 |
| authorships[5].institutions[0].ror | https://ror.org/04twxam07 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I1343551460 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | The University of Texas MD Anderson Cancer Center |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Lifei Zhang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA |
| authorships[6].author.id | https://openalex.org/A5012392185 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-3531-8054 |
| authorships[6].author.display_name | Surendra Prajapati |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I1343551460 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA |
| authorships[6].institutions[0].id | https://openalex.org/I1343551460 |
| authorships[6].institutions[0].ror | https://ror.org/04twxam07 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I1343551460 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | The University of Texas MD Anderson Cancer Center |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Surendra Prajapati |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA |
| authorships[7].author.id | https://openalex.org/A5034304648 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-6899-197X |
| authorships[7].author.display_name | Stephen F. Kry |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I1343551460 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA |
| authorships[7].institutions[0].id | https://openalex.org/I1343551460 |
| authorships[7].institutions[0].ror | https://ror.org/04twxam07 |
| authorships[7].institutions[0].type | healthcare |
| authorships[7].institutions[0].lineage | https://openalex.org/I1343551460 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | The University of Texas MD Anderson Cancer Center |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Stephen F. Kry |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA |
| authorships[8].author.id | https://openalex.org/A5003923687 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-9364-5040 |
| authorships[8].author.display_name | Kristy K. Brock |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I1343551460 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA |
| authorships[8].institutions[0].id | https://openalex.org/I1343551460 |
| authorships[8].institutions[0].ror | https://ror.org/04twxam07 |
| authorships[8].institutions[0].type | healthcare |
| authorships[8].institutions[0].lineage | https://openalex.org/I1343551460 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | The University of Texas MD Anderson Cancer Center |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Kristy K. Brock |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA |
| authorships[9].author.id | https://openalex.org/A5066224894 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-5497-2831 |
| authorships[9].author.display_name | Beth M. Beadle |
| authorships[9].countries | US |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[9].affiliations[0].raw_affiliation_string | Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA |
| authorships[9].institutions[0].id | https://openalex.org/I97018004 |
| authorships[9].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[9].institutions[0].country_code | US |
| authorships[9].institutions[0].display_name | Stanford University |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Beth M. Beadle |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA |
| authorships[10].author.id | https://openalex.org/A5035939194 |
| authorships[10].author.orcid | https://orcid.org/0000-0001-5492-6122 |
| authorships[10].author.display_name | William V. Shaw |
| authorships[10].countries | ZA |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I26999989 |
| authorships[10].affiliations[0].raw_affiliation_string | Department of Medical Physics (G68), University of the Free State, Bloemfontein, South Africa |
| authorships[10].institutions[0].id | https://openalex.org/I26999989 |
| authorships[10].institutions[0].ror | https://ror.org/009xwd568 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I26999989 |
| authorships[10].institutions[0].country_code | ZA |
| authorships[10].institutions[0].display_name | University of the Free State |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | William Shaw |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Department of Medical Physics (G68), University of the Free State, Bloemfontein, South Africa |
| authorships[11].author.id | https://openalex.org/A5091900551 |
| authorships[11].author.orcid | |
| authorships[11].author.display_name | Frederika O’Reilly |
| authorships[11].countries | ZA |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I26999989 |
| authorships[11].affiliations[0].raw_affiliation_string | Department of Medical Physics (G68), University of the Free State, Bloemfontein, South Africa |
| authorships[11].institutions[0].id | https://openalex.org/I26999989 |
| authorships[11].institutions[0].ror | https://ror.org/009xwd568 |
| authorships[11].institutions[0].type | education |
| authorships[11].institutions[0].lineage | https://openalex.org/I26999989 |
| authorships[11].institutions[0].country_code | ZA |
| authorships[11].institutions[0].display_name | University of the Free State |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Frederika O'Reilly |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | Department of Medical Physics (G68), University of the Free State, Bloemfontein, South Africa |
| authorships[12].author.id | https://openalex.org/A5019425529 |
| authorships[12].author.orcid | https://orcid.org/0000-0002-7735-1111 |
| authorships[12].author.display_name | Jeannette Parkes |
| authorships[12].countries | ZA |
| authorships[12].affiliations[0].institution_ids | https://openalex.org/I157614274, https://openalex.org/I2802258008 |
| authorships[12].affiliations[0].raw_affiliation_string | Division of Radiation Oncology and Medical Physics, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa |
| authorships[12].institutions[0].id | https://openalex.org/I2802258008 |
| authorships[12].institutions[0].ror | https://ror.org/00c879s84 |
| authorships[12].institutions[0].type | healthcare |
| authorships[12].institutions[0].lineage | https://openalex.org/I1307091933, https://openalex.org/I2802258008 |
| authorships[12].institutions[0].country_code | ZA |
| authorships[12].institutions[0].display_name | Groote Schuur Hospital |
| authorships[12].institutions[1].id | https://openalex.org/I157614274 |
| authorships[12].institutions[1].ror | https://ror.org/03p74gp79 |
| authorships[12].institutions[1].type | education |
| authorships[12].institutions[1].lineage | https://openalex.org/I157614274 |
| authorships[12].institutions[1].country_code | ZA |
| authorships[12].institutions[1].display_name | University of Cape Town |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Jeannette Parkes |
| authorships[12].is_corresponding | False |
| authorships[12].raw_affiliation_strings | Division of Radiation Oncology and Medical Physics, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa |
| authorships[13].author.id | https://openalex.org/A5006126185 |
| authorships[13].author.orcid | https://orcid.org/0000-0003-2667-2887 |
| authorships[13].author.display_name | Hester Burger |
| authorships[13].countries | ZA |
| authorships[13].affiliations[0].institution_ids | https://openalex.org/I157614274, https://openalex.org/I2802258008 |
| authorships[13].affiliations[0].raw_affiliation_string | Division of Radiation Oncology and Medical Physics, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa |
| authorships[13].institutions[0].id | https://openalex.org/I2802258008 |
| authorships[13].institutions[0].ror | https://ror.org/00c879s84 |
| authorships[13].institutions[0].type | healthcare |
| authorships[13].institutions[0].lineage | https://openalex.org/I1307091933, https://openalex.org/I2802258008 |
| authorships[13].institutions[0].country_code | ZA |
| authorships[13].institutions[0].display_name | Groote Schuur Hospital |
| authorships[13].institutions[1].id | https://openalex.org/I157614274 |
| authorships[13].institutions[1].ror | https://ror.org/03p74gp79 |
| authorships[13].institutions[1].type | education |
| authorships[13].institutions[1].lineage | https://openalex.org/I157614274 |
| authorships[13].institutions[1].country_code | ZA |
| authorships[13].institutions[1].display_name | University of Cape Town |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | Hester Burger |
| authorships[13].is_corresponding | False |
| authorships[13].raw_affiliation_strings | Division of Radiation Oncology and Medical Physics, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa |
| authorships[14].author.id | https://openalex.org/A5084364085 |
| authorships[14].author.orcid | https://orcid.org/0000-0001-8356-0764 |
| authorships[14].author.display_name | Nazia Fakie |
| authorships[14].countries | ZA |
| authorships[14].affiliations[0].institution_ids | https://openalex.org/I157614274, https://openalex.org/I2802258008 |
| authorships[14].affiliations[0].raw_affiliation_string | Division of Radiation Oncology and Medical Physics, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa |
| authorships[14].institutions[0].id | https://openalex.org/I2802258008 |
| authorships[14].institutions[0].ror | https://ror.org/00c879s84 |
| authorships[14].institutions[0].type | healthcare |
| authorships[14].institutions[0].lineage | https://openalex.org/I1307091933, https://openalex.org/I2802258008 |
| authorships[14].institutions[0].country_code | ZA |
| authorships[14].institutions[0].display_name | Groote Schuur Hospital |
| authorships[14].institutions[1].id | https://openalex.org/I157614274 |
| authorships[14].institutions[1].ror | https://ror.org/03p74gp79 |
| authorships[14].institutions[1].type | education |
| authorships[14].institutions[1].lineage | https://openalex.org/I157614274 |
| authorships[14].institutions[1].country_code | ZA |
| authorships[14].institutions[1].display_name | University of Cape Town |
| authorships[14].author_position | middle |
| authorships[14].raw_author_name | Nazia Fakie |
| authorships[14].is_corresponding | False |
| authorships[14].raw_affiliation_strings | Division of Radiation Oncology and Medical Physics, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa |
| authorships[15].author.id | https://openalex.org/A5010028842 |
| authorships[15].author.orcid | |
| authorships[15].author.display_name | Chris Trauernicht |
| authorships[15].countries | ZA |
| authorships[15].affiliations[0].institution_ids | https://openalex.org/I26092322 |
| authorships[15].affiliations[0].raw_affiliation_string | Division of Medical Physics, Stellenbosch University, Tygerberg Academic Hospital, Cape Town, South Africa |
| authorships[15].institutions[0].id | https://openalex.org/I26092322 |
| authorships[15].institutions[0].ror | https://ror.org/05bk57929 |
| authorships[15].institutions[0].type | education |
| authorships[15].institutions[0].lineage | https://openalex.org/I26092322 |
| authorships[15].institutions[0].country_code | ZA |
| authorships[15].institutions[0].display_name | Stellenbosch University |
| authorships[15].author_position | middle |
| authorships[15].raw_author_name | Chris Trauernicht |
| authorships[15].is_corresponding | False |
| authorships[15].raw_affiliation_strings | Division of Medical Physics, Stellenbosch University, Tygerberg Academic Hospital, Cape Town, South Africa |
| authorships[16].author.id | https://openalex.org/A5087940088 |
| authorships[16].author.orcid | https://orcid.org/0000-0002-4442-6068 |
| authorships[16].author.display_name | Hannah Simonds |
| authorships[16].countries | ZA |
| authorships[16].affiliations[0].institution_ids | https://openalex.org/I26092322 |
| authorships[16].affiliations[0].raw_affiliation_string | Division of Radiation Oncology, Stellenbosch University, Tygerberg Academic Hospital, Cape Town, South Africa |
| authorships[16].institutions[0].id | https://openalex.org/I26092322 |
| authorships[16].institutions[0].ror | https://ror.org/05bk57929 |
| authorships[16].institutions[0].type | education |
| authorships[16].institutions[0].lineage | https://openalex.org/I26092322 |
| authorships[16].institutions[0].country_code | ZA |
| authorships[16].institutions[0].display_name | Stellenbosch University |
| authorships[16].author_position | middle |
| authorships[16].raw_author_name | Hannah Simonds |
| authorships[16].is_corresponding | False |
| authorships[16].raw_affiliation_strings | Division of Radiation Oncology, Stellenbosch University, Tygerberg Academic Hospital, Cape Town, South Africa |
| authorships[17].author.id | https://openalex.org/A5038616193 |
| authorships[17].author.orcid | https://orcid.org/0000-0002-3241-6145 |
| authorships[17].author.display_name | Laurence E. Court |
| authorships[17].countries | US |
| authorships[17].affiliations[0].institution_ids | https://openalex.org/I1343551460 |
| authorships[17].affiliations[0].raw_affiliation_string | Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA |
| authorships[17].institutions[0].id | https://openalex.org/I1343551460 |
| authorships[17].institutions[0].ror | https://ror.org/04twxam07 |
| authorships[17].institutions[0].type | healthcare |
| authorships[17].institutions[0].lineage | https://openalex.org/I1343551460 |
| authorships[17].institutions[0].country_code | US |
| authorships[17].institutions[0].display_name | The University of Texas MD Anderson Cancer Center |
| authorships[17].author_position | last |
| authorships[17].raw_author_name | Laurence E. Court |
| authorships[17].is_corresponding | False |
| authorships[17].raw_affiliation_strings | Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1002/acm2.13647 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Automatic contouring QA method using a deep learning–based autocontouring system |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10335 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9977999925613403 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2730 |
| primary_topic.subfield.display_name | Oncology |
| primary_topic.display_name | Colorectal Cancer Surgical Treatments |
| related_works | https://openalex.org/W4307930185, https://openalex.org/W2345184372, https://openalex.org/W3013515612, https://openalex.org/W2136184105, https://openalex.org/W2187500075, https://openalex.org/W2041399278, https://openalex.org/W2160451891, https://openalex.org/W2412743628, https://openalex.org/W2336974148, https://openalex.org/W2056016498 |
| cited_by_count | 25 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 7 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 10 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 3 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1002/acm2.13647 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S29972171 |
| best_oa_location.source.issn | 1526-9914 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1526-9914 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Applied Clinical Medical Physics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Applied Clinical Medical Physics |
| best_oa_location.landing_page_url | https://doi.org/10.1002/acm2.13647 |
| primary_location.id | doi:10.1002/acm2.13647 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S29972171 |
| primary_location.source.issn | 1526-9914 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1526-9914 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Applied Clinical Medical Physics |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Applied Clinical Medical Physics |
| primary_location.landing_page_url | https://doi.org/10.1002/acm2.13647 |
| publication_date | 2022-05-17 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3000931524, https://openalex.org/W2012478287, https://openalex.org/W2146917638, https://openalex.org/W2758656486, https://openalex.org/W2972534068, https://openalex.org/W2941434555, https://openalex.org/W3149841110, https://openalex.org/W3089117938, https://openalex.org/W3094320589, https://openalex.org/W2962914239, https://openalex.org/W2395611524, https://openalex.org/W2343487034, https://openalex.org/W2153431772, https://openalex.org/W3180629942, https://openalex.org/W2087347434, https://openalex.org/W4239510810, https://openalex.org/W2008056655, https://openalex.org/W3088588807, https://openalex.org/W4280570209 |
| referenced_works_count | 19 |
| abstract_inverted_index.+ | 55 |
| abstract_inverted_index.1 | 120 |
| abstract_inverted_index.3 | 239, 330 |
| abstract_inverted_index.6 | 49 |
| abstract_inverted_index.A | 20, 142 |
| abstract_inverted_index.a | 31, 46, 233, 251, 282, 324 |
| abstract_inverted_index.1, | 236, 327 |
| abstract_inverted_index.10 | 122 |
| abstract_inverted_index.11 | 164 |
| abstract_inverted_index.2, | 237, 328 |
| abstract_inverted_index.38 | 79 |
| abstract_inverted_index.49 | 72, 94 |
| abstract_inverted_index.CT | 73, 96 |
| abstract_inverted_index.To | 2 |
| abstract_inverted_index.We | 289 |
| abstract_inverted_index.an | 11, 258, 286, 299 |
| abstract_inverted_index.as | 188, 257, 285 |
| abstract_inverted_index.in | 170, 310 |
| abstract_inverted_index.of | 48, 186, 235, 253, 271, 326 |
| abstract_inverted_index.on | 71 |
| abstract_inverted_index.or | 238, 329 |
| abstract_inverted_index.to | 14, 26, 37, 44, 121, 149 |
| abstract_inverted_index.0.9 | 303 |
| abstract_inverted_index.95% | 108 |
| abstract_inverted_index.DSC | 116, 284, 322 |
| abstract_inverted_index.PAN | 63 |
| abstract_inverted_index.The | 163, 194, 241 |
| abstract_inverted_index.and | 30, 69, 78, 86, 114, 129, 133, 138, 157, 169, 178, 221, 226, 248, 307 |
| abstract_inverted_index.for | 160, 190, 202, 206, 210, 214, 218, 223, 260, 304 |
| abstract_inverted_index.mm) | 123 |
| abstract_inverted_index.mm. | 240, 331 |
| abstract_inverted_index.not | 274 |
| abstract_inverted_index.our | 76 |
| abstract_inverted_index.the | 4, 39, 93, 127, 130, 135, 139, 151, 184, 191, 203, 207, 211, 215, 219, 224, 245, 261, 264, 269, 277, 305, 315 |
| abstract_inverted_index.was | 147, 244, 255, 273, 320 |
| abstract_inverted_index.0.89 | 209 |
| abstract_inverted_index.0.90 | 205 |
| abstract_inverted_index.0.91 | 201 |
| abstract_inverted_index.0.92 | 213 |
| abstract_inverted_index.0.95 | 217 |
| abstract_inverted_index.0.97 | 222 |
| abstract_inverted_index.CTVn | 57 |
| abstract_inverted_index.DSCs | 231 |
| abstract_inverted_index.Dice | 102 |
| abstract_inverted_index.PAN, | 212 |
| abstract_inverted_index.SVM. | 192, 262 |
| abstract_inverted_index.best | 265, 278 |
| abstract_inverted_index.each | 161 |
| abstract_inverted_index.from | 75, 80, 119, 268, 281, 294 |
| abstract_inverted_index.mean | 111 |
| abstract_inverted_index.most | 5, 246, 316 |
| abstract_inverted_index.pair | 47 |
| abstract_inverted_index.test | 38 |
| abstract_inverted_index.than | 276, 302 |
| abstract_inverted_index.that | 153 |
| abstract_inverted_index.used | 43, 148, 256 |
| abstract_inverted_index.were | 42, 89, 124, 166, 181, 200, 227 |
| abstract_inverted_index.when | 9, 250 |
| abstract_inverted_index.with | 117, 232, 298, 312, 323 |
| abstract_inverted_index.(SVM) | 146 |
| abstract_inverted_index.CTVn, | 208 |
| abstract_inverted_index.basis | 175 |
| abstract_inverted_index.error | 197 |
| abstract_inverted_index.input | 259 |
| abstract_inverted_index.lymph | 65 |
| abstract_inverted_index.model | 266, 279 |
| abstract_inverted_index.other | 81 |
| abstract_inverted_index.scans | 74 |
| abstract_inverted_index.using | 10, 92, 183, 229 |
| abstract_inverted_index.(DSC), | 105 |
| abstract_inverted_index.Eleven | 98 |
| abstract_inverted_index.[nodal | 58 |
| abstract_inverted_index.better | 275 |
| abstract_inverted_index.create | 27 |
| abstract_inverted_index.female | 50 |
| abstract_inverted_index.higher | 301 |
| abstract_inverted_index.input. | 287 |
| abstract_inverted_index.inputs | 189 |
| abstract_inverted_index.kernel | 243 |
| abstract_inverted_index.linear | 242 |
| abstract_inverted_index.metric | 8, 319 |
| abstract_inverted_index.pelvic | 51 |
| abstract_inverted_index.radial | 174 |
| abstract_inverted_index.scans. | 97 |
| abstract_inverted_index.system | 13, 23, 25, 34, 36 |
| abstract_inverted_index.target | 60 |
| abstract_inverted_index.tested | 182 |
| abstract_inverted_index.vector | 144 |
| abstract_inverted_index.verify | 15 |
| abstract_inverted_index.volume | 61 |
| abstract_inverted_index.(CTV)], | 62 |
| abstract_inverted_index.Linear, | 173 |
| abstract_inverted_index.Methods | 19 |
| abstract_inverted_index.Purpose | 1 |
| abstract_inverted_index.Results | 193 |
| abstract_inverted_index.[uterus | 54 |
| abstract_inverted_index.between | 126, 134 |
| abstract_inverted_index.cancer; | 314 |
| abstract_inverted_index.certain | 171 |
| abstract_inverted_index.highest | 195 |
| abstract_inverted_index.kernels | 180 |
| abstract_inverted_index.kidneys | 225 |
| abstract_inverted_index.machine | 145 |
| abstract_inverted_index.metrics | 100, 165, 187, 254, 272 |
| abstract_inverted_index.nodes], | 66 |
| abstract_inverted_index.primary | 40 |
| abstract_inverted_index.rectum, | 68, 220 |
| abstract_inverted_index.support | 143 |
| abstract_inverted_index.surface | 112, 115, 230, 283, 321 |
| abstract_inverted_index.targets | 306 |
| abstract_inverted_index.(primary | 24 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 263 |
| abstract_inverted_index.accuracy | 267, 280, 300 |
| abstract_inverted_index.accurate | 6, 247, 317 |
| abstract_inverted_index.achieved | 228 |
| abstract_inverted_index.bladder, | 67, 216 |
| abstract_inverted_index.cervical | 313 |
| abstract_inverted_index.cervix], | 56 |
| abstract_inverted_index.clinical | 28, 59 |
| abstract_inverted_index.contours | 88, 159, 293, 297 |
| abstract_inverted_index.critical | 308 |
| abstract_inverted_index.generate | 45 |
| abstract_inverted_index.internal | 95 |
| abstract_inverted_index.kidneys) | 70 |
| abstract_inverted_index.manually | 90, 136 |
| abstract_inverted_index.patients | 311 |
| abstract_inverted_index.sigmoid, | 177 |
| abstract_inverted_index.Hausdorff | 106, 109 |
| abstract_inverted_index.contours) | 29, 41 |
| abstract_inverted_index.contours. | 18 |
| abstract_inverted_index.detection | 198 |
| abstract_inverted_index.determine | 3, 150 |
| abstract_inverted_index.distance, | 107, 110, 113 |
| abstract_inverted_index.function, | 176 |
| abstract_inverted_index.generated | 17, 91, 137 |
| abstract_inverted_index.reference | 21, 128 |
| abstract_inverted_index.separates | 154 |
| abstract_inverted_index.thickness | 234, 325 |
| abstract_inverted_index.threshold | 152 |
| abstract_inverted_index.(secondary | 35 |
| abstract_inverted_index.acceptable | 85, 156, 292 |
| abstract_inverted_index.accuracies | 199 |
| abstract_inverted_index.calculated | 125 |
| abstract_inverted_index.clinically | 84, 155, 291, 295 |
| abstract_inverted_index.consistent | 249 |
| abstract_inverted_index.contouring | 196 |
| abstract_inverted_index.polynomial | 179 |
| abstract_inverted_index.similarity | 7, 99, 103, 318 |
| abstract_inverted_index.structure. | 162 |
| abstract_inverted_index.structures | 52, 309 |
| abstract_inverted_index.tolerances | 118 |
| abstract_inverted_index.(volumetric | 101 |
| abstract_inverted_index.Conclusions | 288 |
| abstract_inverted_index.coefficient | 104 |
| abstract_inverted_index.combination | 252 |
| abstract_inverted_index.independent | 12 |
| abstract_inverted_index.institution | 77 |
| abstract_inverted_index.(UteroCervix | 53 |
| abstract_inverted_index.UteroCervix, | 204 |
| abstract_inverted_index.combinations | 185, 270 |
| abstract_inverted_index.individually | 168 |
| abstract_inverted_index.investigated | 167 |
| abstract_inverted_index.unacceptable | 87, 158, 296 |
| abstract_inverted_index.verification | 32, 131, 140 |
| abstract_inverted_index.Additionally, | 83 |
| abstract_inverted_index.autocontours, | 132 |
| abstract_inverted_index.autocontours. | 141 |
| abstract_inverted_index.automatically | 16 |
| abstract_inverted_index.combinations. | 172 |
| abstract_inverted_index.distinguished | 290 |
| abstract_inverted_index.institutions. | 82 |
| abstract_inverted_index.[para‐aortic | 64 |
| abstract_inverted_index.autocontouring | 22, 33 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5008015416 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 18 |
| corresponding_institution_ids | https://openalex.org/I1343551460, https://openalex.org/I44461941 |
| citation_normalized_percentile.value | 0.92282743 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |